Algebraic Topology – Exercise 10

Note: Exercise session tomorrow (Friday 10.01) is in Room 02.06.011

(1) Compute the homology of the below four Δ -complexes.

- (2) (a) Compute the simplicial homology groups of the torus using the Δ -complex structure given in Figure 1 (A) below.
 - (b) Consider a different Δ -complex structure on the torus by subdividing each triangle into several triangles as shown in Figure 1 (B)¹. Compute the simplicial homology groups of the torus again using this Δ -complex structure and compare it to the result in a). Do you think the simplicial homology depends on the Δ -structure of a space X?
 - (c) Compute the simplicial homology groups of the Klein bottle using the Δ -complex structure given in Figure 1 (C) below.

FIGURE 2

¹Note that this is even a triangulation of the torus.

- (3) (a) Recall from class the semi-simplicial complex structure on Δ^n . The associated semi-simplicial set Δ^n_{\bullet} is given by $\Delta^n_k = \operatorname{Hom}_{\Delta_{\operatorname{inj}}}([k], [n])$. What is the geometric realization of Δ^n_{\bullet} ?
 - (b) Consider $X_0 = \{x\}, X_1 = \{\tau\}, X_n = 0$ for $n \ge 2$, with $d_1(\tau) = x = d_0(\tau)$. What is the geometric realization of this semi-simplicial set?
 - (c) Let $X_0 = \{x_1, x_2, x_3\}$, $X_1 = \{\tau_1, \tau_2, \tau_3\}$, $X_2 = \{\sigma_1, \sigma_2\}$ and $X_n = 0$ for $n \ge 3$. The two maps $d_{0,1} : X_1 \to X_0$ are given by $d_0(\tau_1) = x_2 = d_1(\tau_2)$, $d_0(\tau_2) = x_3 = d_0(\tau_3)$, $d_1(\tau_3) = x_1 = d_1(\tau_1)$. The three maps $d_{0,1,2} : X_2 \to X_1$ are given by $d_0(\sigma_1) = \tau_2 = d_0(\sigma_2)$, $d_1(\sigma_1) = \tau_3 = d_1(\sigma_2)$ and $d_2(\sigma_1) = \tau_1 = d_2(\sigma_2)$. What is the geometric realization of this semi-simplicial complex?
- (4) (a) Show that any morphism in Δ_{inj} can be written as a composition of face inclusions $d^i: [m] \to [m+1]$ which is defined by

$$d^{i}(j) = \begin{cases} j & \text{if } j < i \\ j+1 & \text{if } j \ge i \end{cases}$$

- (b) Is there an algorithm for finding a unique composition of face inclusions corresponding to an arbitrary morphism g in Δ_{inj} ?
- (5) Construct a 3-dimensional Δ -complex X^2 from 3 tetrahedra T_0, T_1, T_2 by the following two steps. First arrange the tetrahedra in a cyclic pattern as in the below figure, so that each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts taken mod(n). Then identify the bottom face(on the backside) of T_i with the top face(which is towards you) of T_{i+1} for each $i \in \{1, 2, 3\}$.
 - (a) Verify that the Δ -complex of X has exactly two vertices corresponding to s and t indicated in the figure.
 - (b) Show that the simplicial homology groups of X in dimensions 0, 1, 2, 3 are Z, Z/3Z, 0, Z respectively.

²The space X is an example of a *lens space*. For the interested reader the general definition of these spaces are given in Example 2.43 of Hatcher.

- (6) One application of homology is to understand the "geometric" information of a data cloud³. Consider a finite set of points X. Instead of working with the set of points, one can induce a family of semi-simplicial complexes K_X^{ϵ} depending on the parameter $\epsilon \in \mathbb{R}$ in the following way: Use a distance measure dist(\cdot, \cdot) such as the Euclidean distance and connect the points $u, v \in X$ if dist(u, v) $\leq \epsilon$, for varying ϵ . In addition, a k-simplex is added whenever all k 1-dimensional faces of the k-simplex are present.
 - (a) What is the fundamental group and the rank of its abelianization of the shaded area for each value of ϵ in the figure below?
 - (b) Compute the first homology of the below Δ -complex induced from X for the four values of ϵ .

³This is e.g. explained in more words in https://www.ams.org/journals/bull/2009-46-02/ S0273-0979-09-01249-X/S0273-0979-09-01249-X.pdf.