Algebraic Topology – Exercise 3

Compact, Hausdorff, proper, fiber bundles

(1) Prove the proposition from class:

Proposition. Let X be compact and Y Hausdorff. Then any continuous map $f : X \to Y$ is proper.

- (2) Is \mathbb{RP}^n compact or Hausdorff? Show that \mathbb{RP}^1 is homeomorphic to S^1 .
- (3) Let X be a topological space. The Alexandroff compactification or one-point compactification \hat{X} of X is defined as the disjoint union $\hat{X} := X \sqcup \{p\}$, with the following topology:

$$U \subset \hat{X} \text{ open } \iff \begin{cases} p \notin U \text{ and } U \subset X \text{ open, or} \\ p \in U \text{ and } X \backslash U \text{ closed and compact.} \end{cases}$$

- (a) Is $\widehat{(-)}$ a functor from TOP to itself?
- (b) Prove that \hat{X} is compact and that the inclusion map $X \hookrightarrow \hat{X}$ is a continuous embedding.
- (c) Describe (0,1), $\widehat{\mathbb{N}}$ and $\widehat{\mathbb{R}^n}$ geometrically.
- (d) Show that if X is non-compact, then X is dense¹ in \hat{X} , and if X is also connected, then \hat{X} is connected. Give an example of a disconnected space X, such that \hat{X} is connected.
- (e) Show that \hat{X} is Hausdorff if, and only if, X is Hausdorff and locally compact.
- (4) Show that the Hopf fiber bundle $p: S^3 \to S^2$ from class indeed is a fiber bundle. Recall that this was given by

$$p: S^3 \subset \mathbb{C}^2 \longrightarrow S^2 \cong \mathbb{C} \cup \{\infty\}$$
$$(z_0, z_1) \longmapsto z_0/z_1.$$

Conclude that p is proper. Note: When writing $S^2 \cong \mathbb{C} \cup \{\infty\}$ we use that $S^2 \cong \widehat{\mathbb{R}^2}$ is the one-point compactification from exercise 3.

 $^{{}^{1}}X \subset Y$ is dense if $\overline{X} = Y$.

PATHS AND HOMOTOPIES

(5) We define a topology on Map(X, Y) as follows: for $K \subset X$ compact and $U \subset Y$ open, let

$$M(K,V) = \{ f \in \operatorname{Map}(X,Y) \colon f(K) \subset V \}.$$

Take the topology generated by the subbasis of all M(K, V), i.e. a basis for the topology is given by finite intersections

$$\bigcap_{i=1}^k M(K_i, V_i)$$

(a) Show that for any $x \in X$, the evaluation

$$\operatorname{ev}_x \colon \operatorname{Map}(X, Y) \to Y, \qquad f \longmapsto f(x)$$

is continuous.

(b) Show that for PX = Map([0, 1], X), we have a homeomorphism

$$PX \times_X PX \xrightarrow{\cong} PX$$

given by composing paths. Here the fiber product on the left uses the maps $ev_0, ev_1: PX \to X$.

- (6) A topological space X is called *contractible*, if the identity map $id_X : X \to X$ is homotopic to a constant map.
 - (a) Show that [0,1] and \mathbb{R} are contractible.
 - (b) Show that a contractible space is path connected.

Extra understanding:

(7) Prove a characterization of locally compactness by the following steps. First, show uniqueness of the one-point compactification: Let X be locally compact Hausdorff, with one-point compactification $Y = \hat{X}$, and suppose that Y' is a compact Hausdorff space such that $X \subset Y'$ is a subspace and $Y' \setminus X$ is a single point. Show that the unique bijection that is the identity on X is a homeomorphism. Then conclude that a space X is homeomorphic to an open subspace of a compact Hausdorff space if and only if X is locally compact and Hausdorff.