winter semester 2019/20

Algebraic Topology – Exercise 6

(1) Let $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1 =: T$ be the usual covering map of the torus and consider the path

 $f: [0,1] \to T$ $t \mapsto (\cos(2\pi nt) + i\sin(2\pi nt), \cos(2\pi kt) + i\sin(2\pi kt)),$

where $(n,k) \in \mathbb{Z} \times \mathbb{Z}$. Sketch f in the torus T for n = 1, k = 2, and find a lift \tilde{f} of f to $\mathbb{R} \times \mathbb{R}$. Same question for arbitrary $(n,k) \in \mathbb{Z} \times \mathbb{Z}$?

- (2) (a) Let $\sigma : S^1 \to S^1$ be the map sending a point x in S^1 to its antipodal point -x. Find the homomorphism induced by σ on the fundamental group of S^1 .
 - (b) View S^1 as the unit circle in \mathbb{C} . Let $\tau : S^1 \to S^1$ be the reflection across the real line. Find the homomorphism induced by τ on the fundamental group of S^1 .
- (3) (a) Let $F_n := *_n \mathbb{Z}$. Using covering maps, show that $F_2 = \mathbb{Z} * \mathbb{Z}$ has a subgroup isomorphic to F_3 . More generally, for any $n \in \mathbb{N}$, show that F_2 has a subgroup isomorphic to F_n .
 - (b) Show that the free product of two non-trivial groups is neither abelian nor finite.
 - (c) Is the free product of two groups a free group? Give a proof or a counterexample.
- (4) Let $B := S^1 \vee S^1$ be the topological space obtained by gluing together two copies of S^1 at a point. Find 3 non-homeomorphic covering spaces E_i , $i \in \{1, 2, 3\}$, where one of the E_i 's is simply connected. *Hint:* Use the fact that paths in B can be lifted to paths in E.
- (5) Let Σ_g denote the closed orientable surface of genus g. Find a 4-fold cover of Σ_1 that has an action of the cyclic group $\mathbb{Z}/4\mathbb{Z}$. Can you find a k-fold cover of Σ_g with an action of $\mathbb{Z}/k\mathbb{Z}$ for k and n arbitrary positive integers?
- (6) Let G be a group. We say that an action of G on a topological space X is properly discontinuous if each $x \in X$ has a neighborhood U such that all the images gU for varying $g \in G$ are disjoint. In other words, $g_1U \cap g_2U \neq \emptyset$ implies $g_1 = g_2$.
 - (a) Let X be a connected topological space and G a group with a properly discontinuous on X. Show that the quotient map $X \to X/G$ is a covering map.
 - (b) Show that if X is simply-connected, locally path-connected and $x_0 \in X$, then $\pi_1(X/G, x_0) \cong G$.