winter semester 2019/20

Algebraic Topology – Exercise 7

- (1) (a) Compute the fundamental group of the torus $T = S^1 \times S^1$ using the Seifert van Kampen theorem for groups.
 - (b) Compute the fundamental group of the torus $T = S^1 \times S^1$ using the usual covering map $p \times p : \mathbb{R} \times \mathbb{R} \to S^1 \times S^1$, $(t, t') \mapsto (e^{2\pi i t}, e^{2\pi i t'})$.
- (2) (a) Find the universal cover of SO(2).
 - (b) Show that SU(2) is a twofold cover of SO(3). *Hint:* SU(2) is isomorphic to a subgroup of the quaternions \mathbb{H} .
 - (c) Plate trick. Convince yourself that rotating an object with a ribbon connecting it to a fixed point by 2π does not return the system to its original state, but rotating by 4π does. This can for example be done by resting a small plate flat on the palm and performing two rotations of the hand while keeping the plate upright¹. Conclude that SU(2) in fact is a universal cover of $SO(3)^2$.
- (3) A graph is a 1-dimensional CW complex. Let Γ be a connected graph with V vertices and E edges. The Euler characteristic is defined as $\chi(\Gamma) := V - E$. Show that $\pi_1(\Gamma)$ is a free group with rank $1 - \chi(\Gamma)$.
- (4) Let $p: E \to \Gamma$ be a covering of a graph Γ . Show that E is a graph. Moreover, show that if Γ is locally finite then E is locally finite.
- (5) Let G be a subgroup of a free group F. Using the two previous exercises and the following theorem from class, show that G is free.

Theorem. Suppose B is path-connected, locally path-connected, and semilocally simplyconnected. Then for every subgroup $H \subset \pi_1(B, b_0)$ there is a covering space $p: X_H \to B$ such that $p_*(\pi_1(X_H, \tilde{x}_0)) = H$ for a suitably chosen basepoint $\tilde{x}_0 \in X_H$.

(6) Let B be a path-connected, locally path-connected and semilocally simply-connected topological space and let b₀ ∈ B. Let H be a subgroup of π₁(B, b₀) and let P be the collection of all paths α in B with α(0) = b₀. Define E = P/~, where α ~ β iff α(1) = β(1) and [α * β⁻¹] ∈ H ⊂ π₁(B, b₀). Denote the equivalence class of α in E by α[#].

¹Two great illustrations of this: https://www.futilitycloset.com/2016/01/09/the-plate-trick/

²This exercise is a special case of the general statement that for n > 2 the so-called Spin-group Spin(n) is the universal cover of SO(n). In particular $Spin(3) \simeq SU(2)$.

(a) Define

$$\mathcal{B}(U,\alpha) := \{ (\alpha * \delta)^{\#} : \delta : [0,1] \to U, \delta(0) = \alpha(1) \},\$$

where $\alpha \in \mathcal{P}$ and U is a path-connected neighborhood of $\alpha(1)$. Check that the sets $\mathcal{B}(U, \alpha)$ forms a basis for a topology on E

- (b) Show that the map $p: E \to B, \alpha^{\#} \mapsto \alpha(1)$ is continuous and open.
- (c) Conclude that p is a covering map by doing the following steps:
 - For any $b_1 \in B$ choose a path-connected neighborhood $U \stackrel{\iota}{\hookrightarrow} B$ s.t. $\iota_* : \pi_1(U, b_1) \to \pi_1(B, b_1)$ is trivial (Why does such a neighborhood exist?). Show that $p^{-1}(U) = \bigcup_{\alpha} \mathcal{B}(U, \alpha)$, where the union is over all paths α from b_0 to b_1 .
 - Show that if $\beta^{\#} \in \mathcal{B}(U, \alpha)$ then $\mathcal{B}(U, \alpha) = \mathcal{B}(U, \beta)$, and conclude from this that the above union is in fact disjoint.
 - Show that $p|_{\mathcal{B}(U,\alpha)}$ is a bijection.
- (d) Let α be a path in B s.t. $\alpha(0) = b_0$, and denote by e_0 the equivalence class in E of the constant path at b_0 so we have $p(e_0) = b_0$. Show that

 $\widetilde{\alpha}: [0,1] \to E, \ c \mapsto \alpha_c^{\#}, \quad \text{where} \quad \alpha_c(t):=\alpha(tc),$

is a continuous map and defines a lift of α to E. Conclude that E is path-connected.

- (e) Show that $H = p_*(\pi_1(E, e_0))$.
- (f) Congratulations, you have now proved the Theorem above!