Recall the definition of Ω^*:

- As a vector space over \mathbb{R} it has a basis given by monomials

 \[dx_I := dx_{i_1} \cdots dx_{i_p} \]

 for $I = (i_1, \ldots, i_p)$ with $1 \leq i_1 < \cdots < i_p \leq n$.

- It is an algebra with multiplication $\wedge : \Omega^* \otimes \Omega^* \to \Omega^*$ given on basis vectors by:

 \[dx_{i_1} \cdots dx_{i_p} \wedge dx_{i_{p+1}} \cdots dx_{i_{p+q}} := \begin{cases}
 0 & \text{if } i_k = i_{p+l} \text{ for some } 1 \leq k, l \leq n \\
 \text{sgn}(\sigma) \cdot dx_{\sigma(i_{i_1})} \cdots dx_{\sigma(i_{i_{q+q}})} & \text{otherwise},
 \end{cases} \]

 where in the second case σ is the unique permutation of the set $\{i_1, \ldots, i_{p+q}\}$ such that $\sigma(i_1) < \cdots < \sigma(i_{p+q})$.

Exercise 1. Let (A, \wedge) be any algebra over \mathbb{R} with chosen elements $d_1, \ldots, d_n \in A$ satisfying

\[d_i \wedge d_j = -d_j \wedge d_i \quad \text{for all } i, j \tag{1} \]

Show that there is an unique \mathbb{R}-algebra morphism $\Omega^* \to A$ which sends dx_i to d_i for all i.

Remark. This is what it means to say that Ω^* is presented as an \mathbb{R}-algebra by the generators dx_i and the relations [1].

Exercise 2. Please (re)familiarize yourselves with the notion of a smooth manifold. Determine whether the following topological spaces (with the subspace topology induced from \mathbb{R}^2) are smooth manifolds. (warning: trick question)

1. The circle

\[S^1 := \{z \in \mathbb{C} : |z| = 1\} \subset \mathbb{C} \cong \mathbb{R}^2; \]

2. the coordinate axes

\[K := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 x_2 = 0\}; \]

3. the subsets

\[U := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 < x_2\}, \]

\[\overline{U} := \{(x_1, x_2) \in \mathbb{R}^2 : x_1 \leq x_2\} \]

of (strictly) above-diagonal points in \mathbb{R}^2;

4. the intersections $K \cap S^1$, $K \cap U$ and $K \cap \overline{U}$.

Recall the definition of the de Rham algebra $\Omega^*(\mathbb{R}^n) := C^\infty(\mathbb{R}^n) \otimes_{\mathbb{R}} \Omega^*$ and of the de Rham differential $\Omega^*(\mathbb{R}^n) \to \Omega^{*+1}(\mathbb{R}^n)$ given on elementary tensors by

$$f_I \otimes dx_I \mapsto \sum_{i=1}^n \frac{\partial f_I}{\partial x_i} \otimes dx_i \wedge dx_I$$

and extended \mathbb{R}-linearly (note that we would typically omit the \otimes symbol).

Exercise 3. Show that $(\Omega^*(\mathbb{R}^n), d)$ is a cochain complex, i.e., that $d \circ d = 0$.