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Exercise 1 (snake lemma). Consider the commutative solid diagram
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(of modules over some ring) and assume that both rows are exact. Show that it induces a “long” exact
sequence:
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If the rows in the original diagram are exact also with the dashed arrows, then the same is true
for the long exact sequence .

Exercise 2. (long exact sequence in (co)homology) Let
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be a short exact sequence of cochain complexes (of modules over some ring). Use the snake lemma to
construct the long exact sequence of cohomology which looks as follows:
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Exercise 3. (Mayer-Vietoris sequence) Let U and V' be open subsets of some manifold. Use Exercise
to construct the so called Mayer-Vietoris long exact sequence in de Rham cohomology:
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Give an explicit description of the connecting map 0: Hip(UNV) — Hzgl(U uv).

Exercise 4. Use the Mayer-Vietoris sequence to compute the de Rham cohomology HER(Sl) of the
circle. Provide an explicit basis!
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Exercise 5. Follow in the footsteps of the previous exercises to construct a Mayer-Vietoris sequence
for de Rham cohomology with compact support. Use it to explicitly compute the de Rham cohomology
with compact support of S.



