summer semester 2020

Advanced Topics in Algebraic Topology — Exercise Sheet 5

Exercise class: Friday, 29th of May, 11-12

Website with further material, including exercise sheets: https://www.groups.ma.tum.de/algebra/scheimbauer/advanced-topics-in-algebraic-topology/

Recall Stokes' Theorem, which states that for an (n-1)-form ω with compact support on an oriented manifold M we have

$$\int_{M} \mathrm{d}\omega = \int_{\partial M} \omega,$$

where ∂M denotes the boundary of M with its induced orientation.

Exercise 1. Prove Stokes' Theorem for the upper *n*-dimensional half space

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n\,:\,x_n\geq 0\}$$

with boundary \mathbb{R}^{n-1} .

Exercise 2 (Orientation covering). Let M be a connected manifold. The goal of this exercise is to construct a canonical 2-sheeted covering of $M \to M$ which "encodes" the possible local orientations of M.

Proceed in the following steps (you don't need to check every last detail; just convince yourself that the construction works):

- (1) Define M as the set of pairs (x, O_x) , where $x \in M$ and where O_x is a choice of local orientation at x (i.e. an equivalence class of nowhere zero top forms defined on a sufficiently small neighborhood of x).
- (2) Equip \widetilde{M} with a topology and a smooth atlas such that the canonical projection $\pi: \widetilde{M} \to M$ given by $(x, O_x) \mapsto x$ is a smooth double covering (i.e. each point $x \in M$ has a neighborhood U restricted to which the projection is diffeomorphic to $U \mid U \to U$).
- (3) Equip \widetilde{M} with the tautological (global) orientation O which locally at a point (x, O_x) is given by $\pi^*(O_r)$.
- (4) Prove: if M is orientable then $\widetilde{M} \to M$ is diffeomorphic to the trivial double covering $M \coprod M \to M$ and the two components of \widetilde{M} carry opposite orientations.
- (5) Prove: if M is not orientable then M is connected.
- (6) If you know covering theory (e.g. from last semester): what is the map $\pi_1(M) \to \mathbb{Z}/2\mathbb{Z}$ associated to the double covering $\pi \colon \widetilde{M} \to M$ in the case where M is not orientable?

Exercise 3 (Volume form on the sphere). Let $n \ge 1$. Let $r: \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}$ be the radius function $r = \sqrt{x_1^2 + \ldots x_n^2}$. For each α , consider the *n*-form

$$\omega_{\alpha} \coloneqq \frac{1}{r^{\alpha}} \sum_{i=0}^{n} (-1)^{i} x_{i} \mathrm{d} x_{1} \cdots \widehat{\mathrm{d} x_{i}} \cdots \mathrm{d} x_{n}$$

(where the hat denotes that dx_i is missing).

- (1) For which α is ω_{α} is closed?
- (2) Compute the integral $\int_{S^n} \omega_\alpha$ of ω_α over the *n*-sphere $S^n \coloneqq \{r = 1\} \subset \mathbb{R}^{n+1}$.
- (3) For which α is ω_{α} exact?
- (4) Compute $dr \wedge \omega_{\alpha}$ in $\Omega^*(\mathbb{R} \setminus \{0\})$.

Definition 1. Fix two cochain complexes (A^{\bullet}, d_A) and (B^{\bullet}, d_B) and let $f, g: A^{\bullet} \to B^{\bullet}$ be two chain maps. A (chain) homotopy from f to g is a collection of maps $h: A^{\bullet} \to B^{\bullet-1}$ such that $g - f = (d_B \circ h) + (h \circ d_A)$; we write $h: f \simeq g$.

A map $f: A^{\bullet} \to B^{\bullet}$ is called a (chain) homotopy equivalence if it "admits an inverse up to homotopy", i.e. if there is a map $f': B^{\bullet} \to A^{\bullet}$ and homotopies $f \circ f' \simeq 1_B$ and $f' \circ f \simeq 1_A$.

Exercise 4. Fix two cochain complexes A and B.

- (1) Prove that "being chain homotopic" is an equivalence relation on the set of chain maps from A to B.
- (2) Show that if two chain maps $f, g: A \to B$ are homotopic then they induce induce the same morphism on homology, i.e. $H^*(f) = H^*(g): H^*(A) \to H^*(B)$. Is the converse true?
- (3) Show that if a map $f: A \to B$ is a chain homotopy equivalence then it induces an isomorphism in homology. Is the converse true?