Advanced Topics in Algebraic Topology — Exercise Sheet 8

Exercise class: Friday, 19th of June, 11-12

Website with further material, including exercise sheets:

https://www.groups.ma.tum.de/algebra/scheimbauer/advanced-topics-in-algebraic-topology/

Exercise 1. (a) Use the Künneth formula to compute the cohomology of $T^n := \overbrace{S^1 \times \cdots \times S^1}^n$. Give an explicit basis!

- (b) What is the Euler characteristic (as defined on the last sheet) of T^n ?
- (c) Determine the Poincaré dual $\eta_S \in H^1(T^2)$ of the submanifold $S := S^1 \times \{1\} \subset T^2$.

Definition 1 (Real and complex projective lines). The **complex projective line** is the topological space

 $\mathbb{CP}^1 := \frac{\mathbb{C}^2 \setminus \{0\}}{\sim}$

(with the quotient topology), where $v \sim w$ if and only if v and w span the same vector subspace $\langle v \rangle_{\mathbb{C}} = \langle w \rangle_{\mathbb{C}}$ of \mathbb{C}^2 .

Replacing \mathbb{C} by \mathbb{R} yields the **real projective line** \mathbb{RP}^1 .

Exercise 2. (a) Equip \mathbb{RP}^1 with the structure of a smooth manifold diffeomorphic to S^1 .

- (b) Equip \mathbb{CP}^1 with the structure of a smooth manifold which is diffeomorphic to the 2-sphere S^2 .
- **Exercise 3** (Hopf fibration). (a) Show that the projection $p: \mathbb{C}^2 \setminus \{0\} \to \mathbb{CP}^1$ is a non-trivial fiber bundle with fibers diffeomorphic to \mathbb{C}^{\times} .
 - (b) Show that p contains a non-trivial fiber subbundle $S^3 \to S^2 \cong \mathbb{CP}^1$ with fibers diffeomorphic to S^1 .
- **Exercise 4** (Tautological bundle on projective lines). (1) Construct a non-trivial real vector bundle of rank 1 on \mathbb{RP}^1 such that the fiber over each point $[v] \in \mathbb{RP}^1$ is the \mathbb{R} -vector space $\langle v \rangle_{\mathbb{R}} \subset \mathbb{R}^2$. Have you seen this bundle before?
 - (2) Construct a non-trivial complex vector bundle of rank 1 on \mathbb{CP}^1 such that the fiber over each point $[v] \in \mathbb{CP}^1$ is the \mathbb{C} -vector space $\langle v \rangle_{\mathbb{C}} \subset \mathbb{C}^2$. How does this bundle relate to the one constructed in Exercise 3?

Exercise 5 (Bonus challenge). Let M be a compact non-orientable manifold of dimension n. Prove that $H^n(M) = 0$. (Hint: Consider the orientation double cover from sheet 5.)