winter semester 2019/20

Algebraic Topology – Exercise 11

Definition. A sequence of groups $\{G_i\}_{i \in I}$ and group homomorphisms $\{f_i\}_{i \in I}$

 $\dots \longrightarrow G_{i+1} \xrightarrow{f_{i+1}} G_i \xrightarrow{f_i} G_{i-1} \longrightarrow \dots$

is called *exact* if the image of each group homomorphism is equal to the kernel of the next, i.e. $im(f_{i+1}) = ker(f_i)$ for each $i \in I^1$.

- (1) (a) If $0 \to A \xrightarrow{\alpha} B$ is an exact sequence, what can you say about α ? Similarly, if you have an exact sequence of the form $A \xrightarrow{\beta} B \to 0$, what can you say about β ?
 - (b) How many exact sequences of abelian groups of the form

$$0 \xleftarrow{f_0} \mathbb{Z}/2\mathbb{Z} \xleftarrow{f_1} \mathbb{Z}/4\mathbb{Z} \xleftarrow{f_2} \mathbb{Z}/4\mathbb{Z} \xleftarrow{f_3} \dots$$

exist?

(c) Is there a short exact sequence of abelian groups of the form

 $0 \longleftarrow \mathbb{Z}/4\mathbb{Z} \longleftarrow \mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/8\mathbb{Z} \longleftarrow \mathbb{Z}/4\mathbb{Z} \longleftarrow 0?$

- (2) (a) Let X and Y be topological spaces. Is every chain map $g: C_*^{\text{sing}}(X) \to C_*^{\text{sing}}(Y)$ induced by a map of topological spaces?
 - (b) Let \mathbb{D}_*^n be the chain complex whose only non-trivial entries are in degrees n and n-1, with $\mathbb{D}_n^n = \mathbb{Z} = \mathbb{D}_{n-1}^n$. Its only non-trivial boundary operator is the identity:

$$\mathbb{D}^n_* := \left(\dots \longleftarrow 0 \longleftarrow \mathbb{Z} \xleftarrow{\mathrm{id}} \mathbb{Z} \longleftarrow 0 \longleftarrow \dots \right)$$

Similarly, let \mathbb{S}^m_* be the chain complex whose only non-trivial entry is $\mathbb{S}^m_m = \mathbb{Z}$, i.e.

$$\mathbb{S}^m_* := \left(\dots \longleftarrow 0 \longleftarrow \mathbb{Z} \longleftarrow 0 \longleftarrow \dots \right)$$

Are there chain maps between \mathbb{D}^n_* and \mathbb{S}^m_* ?

(c) Let (C_*, ∂) and (C'_*, ∂') be two arbitrary chain complexes and let $f_* : C_* \to C'_*$ be a chain map. Assume that f_n is a monomorphism for all n. Do we then know that the maps $H_n(f_*)$ induced on homology are also monomorphisms?

¹Note that the indexing set I can be either finite or infinite.

(3) Prove the *five lemma*: Consider a commutative diagram of abelian groups as below, where both rows are exact. Show that if α, β, δ , and ε are isomorphisms, then γ is also an isomorphism.

$$\begin{array}{cccc} A & \stackrel{i}{\longrightarrow} & B & \stackrel{j}{\longrightarrow} & C & \stackrel{k}{\longrightarrow} & D & \stackrel{l}{\longrightarrow} & E \\ \downarrow^{\alpha} & & \downarrow^{\beta} & & \downarrow^{\gamma} & & \downarrow^{\delta} & & \downarrow^{\varepsilon} \\ A' & \stackrel{i'}{\longrightarrow} & B' & \stackrel{j'}{\longrightarrow} & C' & \stackrel{k'}{\longrightarrow} & D' & \stackrel{l'}{\longrightarrow} & E' \end{array}$$

Definition. Let (D_*, ∂) be a chain complex. Denote by $[d] \in H_n^{\text{sing}}(D)$ the equivalence class of a cycle $d \in \text{ker}(\partial_n)$. If $d, d_0 \in C_*^{\text{sing}}(D)$ are such that $d - d_0$ is a boundary, then d is said to be *homologous* to d_0 .

- (4) Let X be a path-connected, non-empty topological space and let $\omega : [0,1] \to X$ be a continuous path with $\omega(0) = x$ and $\omega(1) = y$. Recall from Exercise 1 on Sheet 9 that $\Delta^1 := \{(t_0, t_1) \in \mathbb{R}^2 : \sum_{i=0}^{1} t_i = 1, t_i \ge 0\}$. Define a singular 1-simplex $\alpha_{\omega} : \Delta^1 \to X$ as $\alpha_{\omega}(t_0, t_1) = \omega(1 t_0)$. In other words, we have associated to a continuous path ω in X a 1-simplex α_{ω} on X. Let $\omega, \omega_1, \omega_2$ be paths in X. Using the above identification show that:
 - (a) Constant paths c_y at y in X are homologous to 0, i.e. the difference $\alpha_{c_y} 0$ is the boundary of some 2-simplex.
 - (b) If $\omega_1(1) = \omega_2(0)$, we can define the concatenation $\omega_1 * \omega_2$. Then $\alpha_{\omega_1 * \omega_2} \alpha_{\omega_1} \alpha_{\omega_2}$ is a boundary.
 - (c) If $\omega_1(0) = \omega_2(0), \omega_1(1) = \omega_2(1)$ and if ω_1 is homotopic to ω_2 relative to $\{0, 1\}$, then α_{ω_1} and α_{ω_2} are homologous as singular 1-chains.
 - (d) Any 1-chain formed from a path of the form $\bar{\omega} * \omega$ is a boundary. Here $\bar{\omega}(t) := \omega(1-t)$.

Proposition 1. For any non-empty path-connected topological space X there is an isomorphism $\pi_1(X, x)_{ab} \cong H_1^{\text{Sing}}(X)$.

- (5) Guided proof of Proposition 1.
 - (a) Let $h: \pi_1(X, x) \to H_1^{\text{sing}}(X)$ be the map that sends the homotopy class $[\omega]_{\pi_1}$ of a closed path ω to its homology class $[\alpha_{\omega}] = [\omega]_{H_1}$. This is called the *Hurewicz* homomorphism. Show that h is well-defined and a group homomorphism. *Hint:* Use the previous exercise.
 - (b) Recall (or look up) the universal property of the abelianization of a group. Use it to construct a group homomorphism $h_{ab}: \pi_1(X, x)_{ab} \to H_1^{sing}(X)$.
 - (c) Construct an inverse to h_{ab} as follows: Choose, for any point $y \in X$, a path u_y from the base point x to y (for the base point x itself choose u_x to be the constant path). Let α be an arbitrary singular 1-simplex and let $y_i := \alpha(e_i)$, where e_i is the *i*th unit basis vector of \mathbb{R}^2 . Define

$$\phi: C_1^{\operatorname{sing}}(X) \to \pi_1(X, x)_{\operatorname{ab}}$$

on the generator α to be the class of the closed path $\tilde{\phi}(\alpha) = [u_{y_0} * \alpha * \bar{u}_{y_1}]$, and extend linearly. Show that $\tilde{\phi}$ is trivial on boundaries. *Hint:* Keep in mind that you map into something abelian.

- (d) Conclude that ϕ descends to a homomorphism $\phi : H_1(X) \to \pi_1(X, x)_{ab}$. Show that it indeed is the inverse of h_{ab} .
- (6) What computational results for $H_1(X)$ follows from the isomorphism in Proposition 1? Consider e.g. familiar topological spaces and different products of topological spaces.