Algebraic Topology – Exercise 12

(1) (a) Consider the chain complex

$$C_* := \left(\cdots \xleftarrow{2^{\cdot}} \mathbb{Z}/4\mathbb{Z} \xleftarrow{2^{\cdot}} \mathbb{Z}/4\mathbb{Z} \xleftarrow{2^{\cdot}} \cdots \right)$$

Is there a chain homotopy from the identity of C_* to the zero map?

- (b) Show that being chain homotopic is an equivalence relation on chain maps.
- (2) Simplify in terms of singular homology groups or compute explicitly the following relative homology groups
 - (a) $H^{\text{sing}}_{*}(X, \emptyset)$
 - (b) $H_*^{\text{sing}}(X, X)$
 - (c) $H_*^{\text{sing}}(X \sqcup Y, Y)$
- (3) Consider the embedding $\iota : S^{n-1} \hookrightarrow D^n$. Use the long exact sequence for relative homology to express $H_j^{\text{sing}}(D^n, S^{n-1})$ in terms of homology groups of S^{n-1} for j > 1 and n > 1.

Definition. Let X be a (non-empty) topological space, and let $\widetilde{C}_*(X)$ be the singular chain complex

$$\widetilde{C}_*(X) := \Big(0 \longleftarrow \mathbb{Z} \xleftarrow{\widetilde{\varepsilon}} C_0(X) \longleftarrow C_1(X) \longleftarrow \cdots \Big),$$

where $\tilde{\varepsilon}$ is the map defined in Exercise (4) a) below. We define the *reduced homology* groups to be $\tilde{H}_*(X) := H^{\text{sing}}_*(\tilde{C}_*(X)).$

- (4) (a) Let X be a topological space. Define a map $\tilde{\varepsilon} : C_0^{\text{sing}}(X) \to C_0^{\text{sing}}(\{\star\}) \cong \mathbb{Z}$ by $\tilde{\varepsilon}(\sum_i \lambda_i \alpha_i) = \sum_i \lambda_i$. Show that $\tilde{\varepsilon}$ makes $\tilde{C}_*(X)$ into a chain complex and gives a well-defined map on homology.¹
 - (b) What is the relation between singular homology and reduced homology for $n \ge 1$?
 - (c) What can you say about $\widetilde{H}_0(X)$?
 - (d) Using the result from Exercise (6) a), show that we have $\widetilde{H}_n(X) \cong H_n^{\text{sing}}(X, \{x\})$ for any base-point $x \in X$.

¹Note that this map induces the homomorphism $\varepsilon : H_0(X) \to \mathbb{Z}$ from last weeks lecture.

(e) For $\emptyset \neq A \subset X$ we define $\widetilde{H}_n(X, A) := H_n^{\text{sing}}(X, A)$. Construct a long exact sequence of reduced homology, i.e. for any pair of topological spaces (X, A) there is a long exact sequence

$$\cdots \longleftarrow \widetilde{H}_{n-1}(A) \longleftarrow \widetilde{H}_n(X,A) \longleftarrow \widetilde{H}_n(X) \longleftarrow \widetilde{H}_n(A) \longleftarrow \cdots$$

- (5) Use the long exact sequence from Exercise (4) (e) to compute. You may use that simplicial and singular homology are isomorphic.
 - (a) Compute the homology groups $H_n^{\text{sing}}(X, A)$ when X is S^2 or $S^1 \times S^1$ and A is a finite set of points in X.
 - (b) Compute the homology groups $H_n^{\text{sing}}(X, A)$ and $H_n^{\text{sing}}(X, B)$ for X a closed orientable surface of genus two with A and B the circles indicated in the below Figure.

(6) (a) Using the long exact sequence of relative homology prove that if $\iota: A \hookrightarrow X$ is a retract, then

 $H_n^{\rm sing}(X)\cong H_n^{\rm sing}(A)\oplus H_n^{\rm sing}(X,A),\quad 0\leqslant n.$

Hint: For a short exact sequence $0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$ of abelian groups the following are equivalent:

- (i) There exists a homomorphism $s: C \to B$ such that $js = 1_C$, and
- (ii) there exists an isomorphism $B \cong A \oplus C$.
- (b) Prove that if the inclusion $\iota : A \hookrightarrow X$ is a deformation retract, then for $0 \leq n$,

$$H_n^{\operatorname{sing}}(\iota): H_n^{\operatorname{sing}}(A) \cong H_n^{\operatorname{sing}}(X), \quad H_n^{\operatorname{sing}}(X, A) \cong 0.$$

- (7) (a) Let $x \in \mathbb{R}^n$ be an arbitrary point. Express $H_*^{\text{sing}}(\mathbb{R}^n \setminus \{x\})$ in terms of homology groups of spheres.
 - (b) Let $[y] \in \mathbb{R}P^2$ be an arbitrary point. Express the homology groups $H_*^{\text{sing}}(\mathbb{R}P^2 \setminus \{[y]\})$ in terms of homology groups of spheres.
 - (c) For $n \in \mathbb{N}$, let $\mathbb{C}P^n := (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, where $z \sim z'$ if there exists a $\lambda \in \mathbb{C} \setminus \{0\}$ such that $z = \lambda z'$. The spaces $\mathbb{C}P^n$ are called the *complex projective spaces*. Consider an arbitrary point $[z] \in \mathbb{C}P^2$. Express $H_*^{\text{sing}}(\mathbb{C}P^2 \setminus \{[y]\})$ in terms of homology groups of spheres.