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Algebraic Topology – Exercise 13 Sketch of solutions

(1) Compute the homology of R3zA, where A is the upper hemisphere of the unit sphere S2

in R3.

Solution: Note that A deformation retracts to txu for any point x P A, so their complements
in R3 are homotopy equivalent. (Why?) By homotopy invariance of homology, we need
to understand the homology groups of R3ztxu. Removing one point from R3 is homotopy
equivalent to S2, so we get

HnpR3zAq – HnpS
2q “

#

Z, n “ 0, 2,

0, otherwise.

(2) Compute the reduced homology of the Klein bottle using the given cover.

Solution: Similarly to the Mayer-Vietoris sequence we have seen in class, one can obtain
a reduced version of the Mayer-Vietoris sequence. In more detail, the long exact sequence
follows from a short exact sequence of the certain chain complexes (c.f. the proof), so we only
need to check that the analogous chain complexes for reduced homology, given by extending
the chain complexes by a copy of Z in degree -1 (c.f. Exercise 4 on Sheet 12), also form a short
exact sequence. Do this! It follows that we have a long exact sequence of the form

0 Ð rH0pKq Ð rH0pX1q ‘ rH0pX2q Ð rH0pX1 XX2q Ð rH1pXq Ð ¨ ¨ ¨ (1)

In this exercise both X1 and X2 are Möbius bands, and the same is true for X3 – X1 XX2.
We have seen in class that a Möbius band deformation retracts to S1 (recall the argument),
so for i P t1, 2, 3u we have that

rHnpXiq – rHnpS
1q “

#

Z, n “ 1

0, otherwise.

First we note that since rH0pX1q ‘ rH0pX2q “ 0 by exactness of (1) we have that rH0pKq “ 0.

The same argument also ensures that rHnpKq “ 0 when n ą 2. Substituting the known homol-
ogy groups of Xi into the long exact sequence for n “ 1, 2 we have the exact sequence

0 Ð rH1pKq
g
ÐÝ rH1pX1q ‘ rH1pX2q – Z‘ Z

rH1pι1,ι2q
ÐÝÝÝÝÝ rH1pX1 XX2q – ZÐ rH2pKq Ð 0‘ 0.

(2)

We need to understand the maps in the long exact sequence to find the unknown homology
groups. We have inclusions ιi : X1 X X2 ãÑ Xi. Consider a loop in X1 X X2 which is a
generator of its first homology group. Under the inclusion into Xi this is sent to a loop
running twice along a generator of the first homology of Xi, so on the level of homology



groups we have rH1pι1, ι2qp1q “ p2, 2q
1. Hence, the kernel of this map is 0, so the image of the

map rH2pKq Ñ Z in the long exact sequence (2) is the zero map, but since it is also injective
by exactness, we find that

H2pKq – rH2pKq “ 0.

Exactness of (2) also tells us that kerpgq “ imp rH1pι1, ι2qq “ Zp2, 2q. Note that Zp2, 2q ‰
2Z‘ 2Z! In addition impgq “ kerp0q “ rH1pKq. Hence we find that

rH1pKq –
`

Zp1, 0q ‘ Zp0, 1q
˘

{Zp2, 2q –
`

Zp0, 1q ‘ Zp1, 1q
˘

{2Zp1, 1q – Z‘ Z{2Z.

Remark. The fact that H2pKq – rH2pKq “ 0 implies that K is a “non-oriented surface”.
We briefly talked about orientability in connection with triangulations of surfaces. You may
like to think about (or look up) the connection if you are interested.

(3) Use the Mayer-Vietoris Theorem to compute H˚pFgq.

Solution: ChooseX1 andX2 as in the Figures below, i.e.X1 “ Fgztsmall disk in the center of Fgu
and X2 “ slightly bigger disk, chosen such that it covers the disk that is removed in X1.

X1
X2

First we saw in class (recall the argument for this!) that X1 deformation retracts onto the

boundary of Fg which is a wedge sum of circles, i.e.X1 »
Ž2g
i“1 S

1. Secondly, we have that
X2 – D2 » t˚u and X1 XX2 is the complement of a disk in another disk, which deformation
retracts to S1 (Why?). Thus, since homology is homotopy invariant,

HnpX1q –

$

’

&

’

%

Z, n “ 0,

Z2g, n “ 1,

0, else;

HnpX2q –

#

Z, n “ 0,

0, else;
HnpX1 XX2q –

#

Z, n “ 0, 1,

0, else.

We use the Mayer-Vietoris sequence for the cover of Fg given by X1 and X2.

As in the previous exercise, for n ą 2, the exact sequence reads

0 – Hn´1pX1 XX2q Ð HnpFgq Ð HnpX1q ‘HnpX2q – 0‘ 0,

so by exactness, for n ą 2, we have HnpFgq – 0.

1Depending on how you choose Xi – S1 you can also run along Xi in the opposite direction and hence map
1 to e.g. (2,-2) but this does not affect the computation, as long as you are consistent with your choices.



To compute H2pFgq, consider the following terms in the Mayer-Vietoris sequence:

¨ ¨ ¨ Ð H1pFgq Ð H1pX1q ‘H1pX2q
H1pι1q
ÐÝÝÝÝ H1pX1 XX2q Ð H2pFgq Ð 0‘ 0 Ð ¨ ¨ ¨

First, note that by exactness, H2pFgq injects into H1pX1 X X2q. To compute its image, we
compute the kernel of H1pι1q.

Since H1pX2q – 0 the map H1pι1q reduces to a linear map ῑ : H1pX1 X X2q – Z Ñ Z2g –

H1pX1q induced from including a loop close to the edge into X1. On homology, this gives
ῑp1q “ rag, bgs ¨ ¨ ¨ ra1, b1s “ 0, where the last equality follows from the fact that H1 is abelian.
Thus, from the long exact sequence we have that H2pFgq – H1pX1 XX2q – Z.

Continuing the long exact sequence

¨ ¨ ¨ Ð H0pX1q ‘H0pX2q
H0pι1,ι2q
ÐÝÝÝÝÝ H0pX1 XX2q Ð H1pFgq Ð H1pX1q ‘H1pX2q

0
Ð ¨ ¨ ¨

Including X1 XX2 » S1 into X1 and X2 induces the map H0pι1, ι2qpr1sq “ pr1s, r1sq on the
zeroth homology (Why?). In particular this is an injective map with trivial kernel, so by
exactness we deduce that H1pFgq – Z2g.

Finally, we saw in class that H0 of a topological space simply counts connected components,
of which Fg only has one. Hence, H0pFgq “ Z. Summarizing, we computed

H˚pFgq “

$

’

&

’

%

Z, ˚ “ 0, 2,

Z2g, ˚ “ 1,

0, ˚ ě 3.

(4) Compute the homology groups of the torus T . Hint: Use Mayer-Vietoris, for example
with two overlapping cylinders as indicated in the below Figure.

Solution: One can simply plug in g “ 1 in the results of the previous exercise and we are
done. However, practice makes perfect so here we go:

For the given cover we have that A and B are homeomorphic to S1 times some interval such
that the two cylinders slightly overlap. Their intersection A X B is homeomorphic to the
disjoint union of two copies of S1 times a small interval. All intervals could be open or closed,
but let’s chose them to be closed. Hence we already know all of their homology groups since
S1 ˆ ra, bs deformation retracts onto S1 (Why?), and we saw in class that the homology of a



disjoint union is the direct sum of the homologies. Concretely,

HnpAq “ HnpBq –

#

Z, n “ 0, 1

0, else
HnpAXBq –

#

Z‘ Z, n “ 0, 1

0, else.

As in the the previous exercises we find that HnpT q “ 0 for n ą 2 (you could have also used
a dimension argument here). Thus, the interesting calculations concern n “ 0, 1, 2. First we
consider the following part of the Mayer-Vietoris sequence

¨ ¨ ¨ Ð H1pT q H1pAq ‘H1pBq H1pAXBq H2pT q H2pAq ‘H2pBq Ð ¨ ¨ ¨

Z‘ Z Z‘ Z 0‘ 0

H1(i,j)

–

r

–

0

–

We now start by considering the map induced by the inclusions i and j of AXB into A and
B, respectively. Since AXB is a disjoint union of two cylinders it has two generators, one for
each cylinder. Denote these two loops by α and β. Similarly, we have one generator each for
H1pAq and H1pBq (draw this!). We choose the directions of the loops in the following way.
(What does this mean in the picture?) We view them in H1pAq ‘ H1pBq by concatenating
with the inclusion and denote them by the generators p1, 0q and p0, 1q in Z‘ Z, respectively.
Again using the concatenating with the inclusion into H1pAq ‘H1pBq, we have that

H1piqpαq “ p1, 0qH1pjqpαq “ p0, 1q

H1piqpβq “ p1, 0qH1pjqpβq “ p0, 1q

This depends on the choices of directions of the two loops, and one has to be consistent in
these choices. With other choices, signs will appear. The computation on homology does not
depend on these choices.

Note that with our choices the two generators α and β are mapped to the same generating
circle. Then we have that

H1pi, jqpαq “ p1, 1q “ H1pi, jqpβq

and hence H1pi, jqpk ¨α` l ¨βq “ pk` l, k` lq. Hence, we have that impH1pi, jqq “ Zp1, 1q – Z
and kerpH1pi, jqq “ Zpα ´ βq – Z. Another way of understanding this map is to note that
H1pi, jq corresponds to the following matrix

ˆ

1 1
1 1

˙

: Z‘ ZÑ Z‘ Z.

This gives us enough information to calculate H2pT q. First, since the part of the long exact
sequence above starts with a trivial group we know that r is injective. Exactness gives us
imprq “ kerpH1pi, jqq – Z, so it follows that H2pT q – Z.

To calculate H0pT q and H1pT q we need further pieces of the long exact sequence. To simplify
calculations we will work with reduced homology (which only differs from ordinary homology
in the zeroth degree). Thus, we consider



0 rH0pT q rH0pAq ‘ rH0pBq rH0pAXBq H1pT q H1pAq ‘H1pBq ¨ ¨ ¨

0‘ 0 Z Z‘ Z

»

B

»

H1(f-g) H1(i,j)

»

It follows by exactness that rH0pT q “ 0. One can also find H0pT q by noting that the torus
only has one connected component so H0pT q “ Z.

The inclusion of A and B into T are denoted by f and g respectively, and determine the map
from the direct sum H1pAq ‘ H1pBq to H1pT q. From exactness we have kerpH1pf ´ gqq “
impH1pi, jqq – Z. Hence,

kerpBq “ impH1pf ´ gqq “ Z‘ Z{kerpH1pf ´ gqq – Z.
Moreover, we know that B is surjective (Why?). So the short exact sequence of the map B
becomes

0 kerpBq H1pT q impBq 0

Z Z

» »

As Z is a free abelian group this short exact sequence splits and we can conclude that H1pT q –
Z‘ Z2.

Aside: If you want to solve this without resorting to reduced homology you need to work out
the map induced by the inclusions on zeroth homology. It basically works the same way as
H1pi, jq, so if you find it necessary to practice these calculations I highly encourage you to
work it out that way as well!

(5) Let the topological space M be Hausdorff and locally Euclidean of dimension d ě 1 (for
example, M could be a manifold).

(a) Use excision to compute HnpM,Mztxuq for any point x PM .

(b) Consider the case when M is an open Möbius strip, i.e. has no boundary. Pick a
generator µx P HnpM,Mztxuq – Z and describe what happens with µx if one walks
along the meridian of the Möbius strip.

Solution: Pick an arbitrary point x P M . Since M is locally Euclidean we can find a small
neighborhood Ux ĂM for any x such that Ux – Rd, where d3 is the dimension of the space.
The subset MzUx ĂMztxu satisfies the condition for excision (check them!), so we have the
following isomorphism of homology groups

H˚
`

M,Mztxu
˘

– H˚

´

MzpMzUxq, pMztxuqzpMzUxq
¯

– H˚
`

Ux, Uxztxu
˘

.

By construction we have that Ux is homeomorphic to Rd. In addition Uxztxu – Rdztxu which
we have seen in class to deformation retract onto Sd´1. Hence, by homotopy invariance,

HnpUxq –

#

Z, n “ 0

0, else,
HnpUxztxuq –

#

Z, n “ 0, d´ 1

0, else.

2Note that this (fortunately) agrees with what we would have gotten by setting g “ 1 in the previous
exercise. It is a good habit to always double-check your answer when you can!

3Note that we changed the notation for the dimension from n to d to avoid a confusion with the indices].



We use the long exact sequence for relative homology for Uxztxu Ă Ux.

For n ě 2 we find that HnpUx, Uxztxuq – Hn´1pUxztxuq – Hn´1pS
d´1q since the (surround-

ing) homology groups of Ux are trivial. For the lower degrees we have

0 H0pUx, Uxztxuq H0pUxq H0pUxztxuq H1pUx, Uxztxuq H1pUxq ¨ ¨ ¨

Z Z 0

H0pιq

» » »

The inclusion ι : Uxztxu ãÑ Ux induces an isomorphism H0pιq on the zeroth homology
groups (Why?). Hence, from exactness of the sequence we learn that H1pUx, Uxztxuq “
0 “ H0pUx, Uxztxuq. Summarizing, we have

HnpM,Mztxuq – HnpUx, Uxztxuq –

#

Z, n “ d

0, else.

For part (b) pick a point x P M and choose a 2-simplex α : ∆2 Ñ M such that Bα P

C1pMztxuq. In particular this 2-simplex comes with an orientation! Walking along the
meridian of the Möbius band reverses the orientation of the 2-simplex (One illustration of
this only with a crab instead of a 2-simplex can be found at: Illustration). This shows that
the Möbius band is non-orientable.

(6) Prove the following properties of the degree map:

(a) Let f pnq : Sn Ñ Sn be the map px0, x1, ..., xnq ÞÑ p´x0, x1, ..., xnq. Show that f pnq

has degree -1.

(b) Show that for f, g : Sn Ñ Sn we have

degpF ˝ pf _ gq ˝ T q “ degpfq ` degpgq.

Solution: Recall from the computation of the homology groups of spheres (lecture on Tuesday
28.01) that we have isomorphisms

HkpS
nq

δ
Ñ Hk1pS

n´1 ˆ p0, 1qq
Hn´1pιq´1

– Hk´1pS
n´1q.

We denote this composition by D, i.e.D :“ Hn´1pιq
´1 ˝ δ.

Let µ0 :“ r`1s ´ r´1s P H0pS
0q and µ1 P H1pS

1q – π1pS
1q4 be the degree one map (i.e. the

class of the identity on S1 which corresponds to the class of the loop t ÞÑ e2πit). Define the
higher µn as Dµn “ µn´1. Then µn is called the fundamental class in HnpS

nq.

We prove the claim by induction. First,

f p0qpµ0q “ f p0qpr`1s ´ r´1sq “ r´1s ´ r`1s “ ´µ0.

The morphism D is natural, so we have

Hnpf
pnqqµn “ Hnpf

pnqqD´1µn´1 “ D´1Hn´1pf
n´1qµn´1

p˚q
“ D´1p´µn´1q “ ´µn,

4Here the fundamental group is abelian, so in particular it is equal to its abelianization. This isomorphism
is not true in general, c.f. Exc 5 Sheet 11.

https://en.wikipedia.org/wiki/M%C3%B6bius_strip#/media/File:Fiddler_crab_mobius_strip.gif


where step p˚q follows from the induction hypothesis. Thus, we can conclude that the degree

of f pnq is ´1.

For part (b) we note that the map rHnpT q sends µn to pµn, µnq P rHnpS
nq ‘ rHnpS

nq –

rHnpS
n _ Snq, where the isomorphism follows from the fact that our spaces are well-pointed

(i.e., they satisfy the conditions for excision). Under the isomorphism the map rHnpf _ gq

corresponds to pµn, µnq ÞÑ p rHnpfqµn, rHnpgqµnq and this yields pdegpfqµn, degpgqµnq. Under
the fold map this is sent to the sum, which is exactly what we wanted to show.

Note that this construction gives a generalization of the additivity relation degpω2 ‹ ω1q “
degpω2q ` degpω1q which follows from concatenation of paths in the case of S1.

(7) (a) Let SX denote the suspension of a topological space X. Show by a Mayer-Vietoris

sequence that for all n there are isomorphisms rHnpSXq – rHn´1pXq.

(b) For f : Sn Ñ Sn show that suspension leave the degree invariant, i.e.

degpSpfqq “ degpfq.

Conclude that for every integer k P Z there is a continuous map f : Sn Ñ Sn with
degpfq “ k. Hint: Recall that for X “ Sn we have SX – Sn`1.

Solution: Recall that the suspension of a topological space is defined as SX :“ X ˆ

r0, 1s{pX ˆ t0u, X ˆ t1uq. The suspension of a space can be seen as two cones glued to-
gether at their bases. Denoting the upper cone by C`X and the lower cone by C´X, we have
SX “ C`X YX C´X. Their intersection is homeomorphic to the topological space X. The
Mayer-Vietoris sequence becomes

¨ ¨ ¨ Ð rHnpC`Xq ‘ rHnpC´Xq – 0‘ 0 Ð rHnpXq Ð rHn`1pSXq Ð 0‘ 0 Ð ¨ ¨ ¨

since cones are contractible and hence have trivial homology groups. Exactness of the sequence
then gives the desired isomorphism.

For part (b) we first recall that the suspension of Sn is Sn`1 which together with the isomor-

phism from (a) gives rHn`1pSS
nq – rHn`1pS

n`1q – rHnpS
nq.

Note that the isomorphism in (a) comes from the connecting homomorphism δ which in

particular is functorial (Proposition 1 in Lecture nr 25). Also, it sends µn`1 P rHn`1pS
n`1q

to ˘µn P rHnpS
nq. We have the commuting diagram

rHn`1pS
n`1q rHn`1pSS

nq rHn`1pSS
nq rHn`1pS

n`1q

rHnpS
nq rHnpS

nq

–
rHn`1pSfq

δ

–

δ

rHnpfq

By tracing ˘µn`1 P rHn`1pSS
nq through the diagram we find that ˘degpfqµn “ ˘degpSfqµn,

with the same sign. Hence, suspension leaves the degree of the map f invariant. Recall that we
have maps of any degree k of S1 (what are they?), so by using the isomorphism SSn – Sn`1

and the result of this exercise it follows that the same is true for any Sn as well.



(8) We define the Euler characteristic χpXq as the alternating sum χpXq :“
ř

ip´1qiRankpCiq.
Show that

χpXq :“
ÿ

n

p´1qn RankpHnpXqq

Solution: The proof is exactly the same as that of Theorem 2.44 in Hatcher. Hatcher uses the
chain complex from a CW complex structure on the topological space X, but the argument
is purely algebraic and works exactly the same way when working with the chain complex
coming from a ∆-complex structure on X.

In particular, this means that χpXq only depends on the homotopy type of X and is inde-
pendent of the choice of ∆-structure (or CW-complex structure) on X!

(9) (a) Let X be a path-connected, locally path-connected, and simply connected topological
space. Let p : E Ñ B be a covering with E contractible. Prove that every continuous
map f : X Ñ B induces only zero maps in reduced homology, i.e. for all n P N0 we

have rHnpfq “ 0.

(b) Show that for n,m P N with m ě 2, any map Sm Ñ Tn “ pS1qn induces the zero
map on all reduced homology groups. Give a counterexample for m “ 1.

Solution: Here, for every continuous map f : X Ñ B there exists a map rf (why?) such that
the below diagram commutes

E

X B.

p

f

rf

Since E is contractible we know that HnpEq “ 0 for all n ą 0, which implies that Hnppq “ 0.

On the level of homology we have Hnpfq “ Hnpp ˝ rfq “ Hnppq ˝Hnp rfq since H˚ is functorial.
Hence Hnpfq must also be trivial for all n ą 0. Finally, for n “ 0 we simply use that X is

path-connected so rH0pXq “ 0 which ensures that rH0pfq “ 0 as well.

In part (b) we note that when m ě 2 the sphere Sm is path-connected, locally path-connected
and simply connected. Also, Tn has the covering p : Rn Ñ Tn given by pφ1, ...., φnq ÞÑ
peiπφ1 , ..., eiπφnq. We know that Rn is contractible, so for this situation the result in part (a)
applies.

For the case m “ 1 we can e.g. consider the identity map id : S1 Ñ T 1 which gives rH1pidq “
H1pidq “ idµ1 . This is non-trivial and hence gives a counterexample.


