Reading course: Coxeter groups

Felix Schremmer

April 13, 2021

- 2 Introduction to Coxeter groups
- 3 Reading assignment for next week

Structure of the course

- I assign reading material and exercises
- You read the material and try to solve the exercises
- We discuss your questions and problems

All infos on the course website:

https://www.groups.ma.tum.de/en/algebra/ felix-schremmer/reading-course-coxeter-groups/

About	the	course
000		

Introduction to Coxeter groups

Reading assignment for next week $\circ\circ$

Timeplan

- Today: Introduction to the topic
- Next 9 timeslots: Working through the first chapters of *Combinatorics of Coxeter Groups*.
- Remaining 4 timeslots: An application, precise topic tbd
- Oral exam

Graduate Texts in Mathematics

Anders Björner Francesco Brenti Combinatorics of Coxeter Groups

Springer

- 2 Introduction to Coxeter groups
- 3 Reading assignment for next week

The symmetric group

Definition

Let $n \ge 1$. The symmetric group S_n consists of all bijective maps

$$f:\{1,\ldots,n\}\to\{1,\ldots,n\}.$$

Group multiplication is function composition.

Special kinds of elements of S_n are the *transpositions* $s_{i,j}$ for $i, j \in \{1, ..., n\}$, defined by

$$s_{i,j}(i) = j,$$
 $s_{i,j}(j) = i,$ $s_{i,j}(k) = k \quad \forall k \neq i, j.$

The elements $s_{i,i+1}$ for i = 1, ..., n-1 are called *standard transpositions*.

Lemma

The symmetric group S_n is generated by the standard transpositions $s_{i,i+1}$, i = 1, ..., n-1.

We want to give a geometric proof of this lemma.

A group representation

Denote by V either the vector space \mathbb{R}^n or

$$\{v \in \mathbb{R}^n \mid v_1 + v_2 + \dots + v_{n-1} + v_n = 0\}.$$

Then S_n acts on V by permutation of coordinates:

$$fv = (v_{f^{-1}(1)}, v_{f^{-1}(2)}, \dots, v_{f^{-1}(n-1)}, v_{f^{-1}(n)}).$$

A group representation

Denote by V either the vector space \mathbb{R}^n or

$$\{v \in \mathbb{R}^n \mid v_1 + v_2 + \dots + v_{n-1} + v_n = 0\}.$$

Then S_n acts on V by permutation of coordinates:

$$fv = (v_{f^{-1}(1)}, v_{f^{-1}(2)}, \dots, v_{f^{-1}(n-1)}, v_{f^{-1}(n)}).$$

We note that $s_{i,j}v = v \iff v_i = v_j$. If $i \neq j$, these form a hyperplane

$$H_{i,j} = \{ v \in V \mid v_i = v_j \}.$$

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

Weyl chambers

Call a vector $v \in V$ regular if $v_i \neq v_j$ for $i \neq j$. i.e.

$$V^{\mathrm{reg}} := V \setminus \bigcup_{i \neq j} H_{i,j}.$$

A Weyl chamber is a connected component of $V^{\text{reg.}}$ e.g.

$$C_0 = \{ v \in V \mid v_1 > v_2 > \cdots > v_{n-1} > v_n \}.$$

Introduction to Coxeter groups

Reading assignment for next week $\circ\circ$

Weyl chambers

Call a vector $v \in V$ regular if $v_i \neq v_j$ for $i \neq j$. i.e.

$$V^{\mathrm{reg}} := V \setminus \bigcup_{i \neq j} H_{i,j}.$$

A Weyl chamber is a connected component of V^{reg} . e.g.

$$C_0 = \{ v \in V \mid v_1 > v_2 > \cdots > v_{n-1} > v_n \}.$$

Then there is a 1-1 correspondence

$$\begin{array}{rcl} S_n & \leftrightarrow & \text{weyl chambers} \\ f & \mapsto & fC_0. \end{array}$$

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

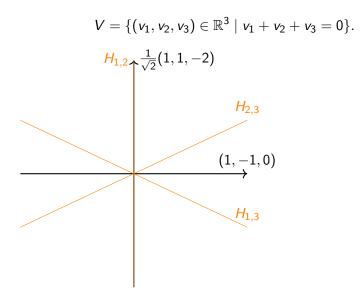
Weyl chambers of S_3

$$V = \{(v_1, v_2, v_3) \in \mathbb{R}^3 \mid v_1 + v_2 + v_3 = 0\}.$$

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

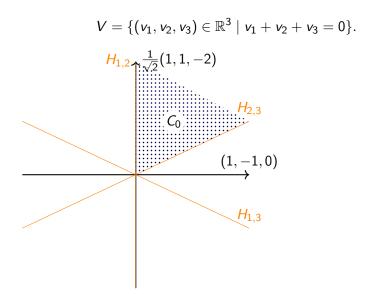
Weyl chambers of S_3



Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

Weyl chambers of S_3



For $f \in S_n$, denote

 $\ell(f) := \#\{H_{i,j} \mid H_{i,j} \text{ lies in between } C_0 \text{ and } fC_0\}.$

The hyperplanes neighbouring C_0 are precisely the hyperplanes of the form $H_{i,i+1}$.

Length

For $f \in S_n$, denote

$$\ell(f) := \#\{H_{i,j} \mid H_{i,j} \text{ lies in between } C_0 \text{ and } fC_0\}.$$

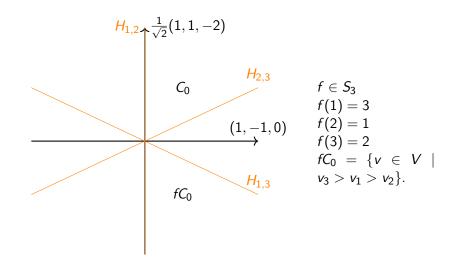
The hyperplanes neighbouring C_0 are precisely the hyperplanes of the form $H_{i,i+1}$. Now if $H_{i,i+1}$ lies in between C_0 and fC_0 , then

$$\ell(s_{i,i+1}f) = \#\{H_{i,j} \mid H_{i,j} \text{ lies in between } s_{i,i+1}C_0 \text{ and } fC_0\}$$
$$= \#\{H_{i,j} \neq H_{i,i+1} \mid H_{i,j} \text{ lies in between } C_0 \text{ and } fC_0\}$$
$$= \ell(f) - 1.$$

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

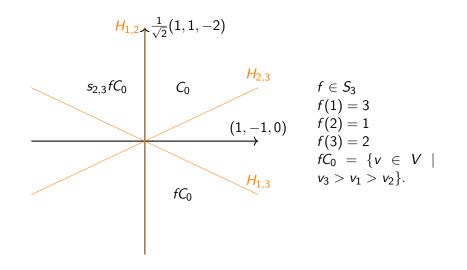
Illustration for S_3



Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

Illustration for S_3



Introduction to Coxeter groups

Reading assignment for next week $\circ\circ$

Algebraic meaning of length

Proposition

Each $f \in S_n$ can be written as a product of $\ell(f)$ standard transpositions $s_{i,i+1}$, but not as a product of less than $\ell(f)$ standard transpositions.

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

Algebraic meaning of length

Proposition

Each $f \in S_n$ can be written as a product of $\ell(f)$ standard transpositions $s_{i,i+1}$, but not as a product of less than $\ell(f)$ standard transpositions.

Proof.

As long as $\ell(f) > 0$, we can write $f = s_{i,i+1}(s_{i,i+1}f)$ with $\ell(s_{i,i+1}f) = \ell(f) - 1$. Iterate this $\ell(f)$ times. For the converse, we can show $\ell(s_{i,i+1}f) \le \ell(f) + 1$ for all $f \in S_n$ similar to the previous argument.

Towards Coxeter groups

We saw that S_n is generated by the set

$$S = \{s_{1,2}, s_{2,3}, \ldots, s_{n-2,n-1}, s_{n-1,n}\}.$$

Moreover, writing $s_i = s_{i,i+1}$, we have the relations

$$s_i^2 = 1,$$
 $s_i s_j = s_j s_i$ if $|i - j| \ge 2,$
 $(s_i s_{i+1})^3 = 1.$

Towards Coxeter groups

We saw that S_n is generated by the set

$$S = \{s_{1,2}, s_{2,3}, \ldots, s_{n-2,n-1}, s_{n-1,n}\}.$$

Moreover, writing $s_i = s_{i,i+1}$, we have the relations

$$s_i^2 = 1,$$
 $s_i s_j = s_j s_i$ if $|i - j| \ge 2,$
 $(s_i s_{i+1})^3 = 1.$

Every other equation consisting of just s_i 's can be derived from the above relations and the laws of group theory.

Introduction to Coxeter groups

Reading assignment for next week $_{\rm OO}$

Coxeter groups

Definition

Let S be a set and $m:S\times S\to \{1,2,3,\ldots,\infty\}$ a function such that

$$m(s,s')=m(s',s)$$
 and $m(s,s')=1\iff s=s'$

Coxeter groups

Definition

Let S be a set and $m:S\times S\to \{1,2,3,\ldots,\infty\}$ a function such that

$$m(s,s')=m(s',s)$$
 and $m(s,s')=1\iff s=s'$.

The *Coxeter group* associated to this is the group W presented as follows:

Generators: The set *S*.

Relations: For all $s, s' \in S$ with $m(s, s') \neq \infty$: $(ss')^{m(s,s')} = 1$.

Coxeter groups

Definition

Let S be a set and $m:S\times S\to \{1,2,3,\ldots,\infty\}$ a function such that

$$m(s,s')=m(s',s)$$
 and $m(s,s')=1\iff s=s'.$

The *Coxeter group* associated to this is the group W presented as follows:

Generators: The set S. **Relations:** For all $s, s' \in S$ with $m(s, s') \neq \infty$: $(ss')^{m(s,s')} = 1$.

In the case of S_n : $S = \{s_1, ..., s_{n-1}\}$.

$$m(s_i, s_j) = \begin{cases} 1, & i = j, \\ 3, & |i - j| = 1, \\ 2, & |i - j| \ge 2. \end{cases}$$

Words in S

Let S, m be as in the previous definition. The set of words is

$$S^* := \bigcup_{m \ge 0} S^m = \{(s_1, \ldots, s_m) \mid m \ge 0, s_i \in S\}.$$

Let $w, w' \in S^*$. We say w' is an elementary reduction of w if w' is obtained from w by deleting a subword of the form

$$(\underbrace{s, s', s, s', \dots, s, s'}_{m(s,s') \text{ many pairs}}).$$

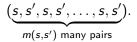
Words in S

Introduction to Coxeter groups

Let S, m be as in the previous definition. The set of words is

$$S^* := \bigcup_{m \ge 0} S^m = \{(s_1, \ldots, s_m) \mid m \ge 0, s_i \in S\}.$$

Let $w, w' \in S^*$. We say w' is an elementary reduction of w if w' is obtained from w by deleting a subword of the form



We write $w \sim w'$ iff there exists words

$$w = w_1, w_2, \ldots, w_{q-1}, w_q = w' \in S^*$$

such that each w_i is an elementary reduction of w_{i+1} , or vice versa.

An explicit description of W

We define $W = {S^*}/{\sim}$ to be the set of equivalence classes of words. If $[w]_{\sim}, [w']_{\sim} \in W$, let $w \circ w'$ be the composed word in S^* and

$$[w]_{\sim} \cdot [w']_{\sim} := [w \circ w']_{\sim}.$$

This gives W the structure of a group.

A universal property

W is equivalently characterized by the following properties:

• We have a map $S \to W$ such that for all $s, s' \in S$ with $m(s, s') \neq \infty$:

$$(ss')^{m(s,s')} = 1.$$

② For each group G and each mapping $\varphi: S \to G$ satisfying the condition

$$(\varphi(s)\varphi(s'))^{m(s,s')} = 1 \in G ext{ if } s, s' \in S ext{ with } m(s,s') \neq \infty,$$

there exists a unique group homomorphism $\hat{\varphi}:W\to G$ with $\hat{\varphi}|_{\mathcal{S}}=\varphi.$

Why study Coxeter groups?

Consider the group GL_n of invertible $n \times n$ -matrices. Let $B \subseteq GL_n$ be the subgroup of upper triangular matrices and $S_n \subseteq GL_n$ the set of permutation matrices. Then

$$GL_n = BS_nB.$$

This is the starting point to understanding the infinite group GL_n by studying the finite group S_n .

Why study Coxeter groups?

Consider the group GL_n of invertible $n \times n$ -matrices. Let $B \subseteq GL_n$ be the subgroup of upper triangular matrices and $S_n \subseteq GL_n$ the set of permutation matrices. Then

$$GL_n = BS_nB.$$

This is the starting point to understanding the infinite group GL_n by studying the finite group S_n . Other reasons:

- Geometry of reflections and the groups generated by them.
- Knot theory, i.e. studying embeddings $S^1 \hookrightarrow \mathbb{R}^3$.

• . . .

- 2 Introduction to Coxeter groups
- 3 Reading assignment for next week

Combinatorics of Coxeter Groups

- 1.1 Coxeter systems
- 1.2 Examples (leave out/skim only the examples 1.2.10 and 1.2.11).
- 1.3 A permutation representation
- 1.4 Reduced words and the exchange property
- Exercises 2, 8 and 10 of Chapter 1