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Structure of the course

1 I assign reading material and exercises

2 You read the material and try to solve the exercises

3 We discuss your questions and problems

All infos on the course website:
https://www.groups.ma.tum.de/en/algebra/

felix-schremmer/reading-course-coxeter-groups/

https://www.groups.ma.tum.de/en/algebra/felix-schremmer/reading-course-coxeter-groups/
https://www.groups.ma.tum.de/en/algebra/felix-schremmer/reading-course-coxeter-groups/
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Timeplan

Today: Introduction to the topic

Next 9 timeslots: Working through the first chapters of
Combinatorics of Coxeter Groups.

Remaining 4 timeslots: An application, precise topic tbd

Oral exam
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The symmetric group

Definition

Let n ≥ 1. The symmetric group Sn consists of all bijective maps

f : {1, . . . , n} → {1, . . . , n}.

Group multiplication is function composition.

Special kinds of elements of Sn are the transpositions si ,j for
i , j ∈ {1, . . . , n}, defined by

si ,j(i) = j , si ,j(j) = i , si ,j(k) = k ∀k 6= i , j .

The elements si ,i+1 for i = 1, . . . , n − 1 are called standard
transpositions.
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A lemma

Lemma

The symmetric group Sn is generated by the standard
transpositions si ,i+1, i = 1, . . . , n − 1.

We want to give a geometric proof of this lemma.
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A group representation

Denote by V either the vector space Rn or

{v ∈ Rn | v1 + v2 + · · ·+ vn−1 + vn = 0}.

Then Sn acts on V by permutation of coordinates:

fv = (vf −1(1), vf −1(2), . . . , vf −1(n−1), vf −1(n)).

We note that si ,jv = v ⇐⇒ vi = vj . If i 6= j , these form a
hyperplane

Hi ,j = {v ∈ V | vi = vj}.
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Weyl chambers

Call a vector v ∈ V regular if vi 6= vj for i 6= j . i.e.

V reg := V \
⋃
i 6=j

Hi ,j .

A Weyl chamber is a connected component of V reg. e.g.

C0 = {v ∈ V | v1 > v2 > · · · > vn−1 > vn}.

Then there is a 1-1 correspondence

Sn ↔ weyl chambers
f 7→ fC0.
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Weyl chambers of S3

V = {(v1, v2, v3) ∈ R3 | v1 + v2 + v3 = 0}.

(1,−1, 0)

1√
2

(1, 1,−2)

H1,2

H2,3

H1,3

C0
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Length

For f ∈ Sn, denote

`(f ) := #{Hi ,j | Hi ,j lies in between C0 and fC0}.

The hyperplanes neighbouring C0 are precisely the hyperplanes of
the form Hi ,i+1.

Now if Hi ,i+1 lies in between C0 and fC0, then

`(si ,i+1f ) =#{Hi ,j | Hi ,j lies in between si ,i+1C0 and fC0}
=#{Hi ,j 6= Hi ,i+1 | Hi ,j lies in between C0 and fC0}
=`(f )− 1.



About the course Introduction to Coxeter groups Reading assignment for next week

Length

For f ∈ Sn, denote

`(f ) := #{Hi ,j | Hi ,j lies in between C0 and fC0}.

The hyperplanes neighbouring C0 are precisely the hyperplanes of
the form Hi ,i+1.
Now if Hi ,i+1 lies in between C0 and fC0, then

`(si ,i+1f ) =#{Hi ,j | Hi ,j lies in between si ,i+1C0 and fC0}
=#{Hi ,j 6= Hi ,i+1 | Hi ,j lies in between C0 and fC0}
=`(f )− 1.



About the course Introduction to Coxeter groups Reading assignment for next week

Illustration for S3

(1,−1, 0)

1√
2

(1, 1,−2)H1,2

H2,3

H1,3

C0

fC0

s2,3fC0

f ∈ S3
f (1) = 3
f (2) = 1
f (3) = 2
fC0 = {v ∈ V |
v3 > v1 > v2}.
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Algebraic meaning of length

Proposition

Each f ∈ Sn can be written as a product of `(f ) standard
transpositions si ,i+1, but not as a product of less than `(f )
standard transpositions.

Proof.

As long as `(f ) > 0, we can write f = si ,i+1(si ,i+1f ) with
`(si ,i+1f ) = `(f )− 1. Iterate this `(f ) times.
For the converse, we can show `(si ,i+1f ) ≤ `(f ) + 1 for all f ∈ Sn
similar to the previous argument.
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Towards Coxeter groups

We saw that Sn is generated by the set

S = {s1,2, s2,3, . . . , sn−2,n−1, sn−1,n}.

Moreover, writing si = si ,i+1, we have the relations

s2i = 1, si sj = sjsi if |i − j | ≥ 2,

(si si+1)3 = 1.

Every other equation consisting of just si ’s can be derived from the
above relations and the laws of group theory.
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Coxeter groups

Definition

Let S be a set and m : S × S → {1, 2, 3, . . . ,∞} a function such
that

m(s, s ′) = m(s ′, s) and m(s, s ′) = 1 ⇐⇒ s = s ′.

The Coxeter group associated to this is the group W presented as
follows:
Generators: The set S .
Relations: For all s, s ′ ∈ S with m(s, s ′) 6=∞: (ss ′)m(s,s′) = 1.

In the case of Sn: S = {s1, . . . , sn−1}.

m(si , sj) =


1, i = j ,

3, |i − j | = 1,

2, |i − j | ≥ 2.
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Words in S

Let S ,m be as in the previous definition. The set of words is

S∗ :=
⋃
m≥0

Sm = {(s1, . . . , sm) | m ≥ 0, si ∈ S}.

Let w ,w ′ ∈ S∗. We say w ′ is an elementary reduction of w if w ′ is
obtained from w by deleting a subword of the form

(s, s ′, s, s ′, . . . , s, s ′︸ ︷︷ ︸
m(s,s′) many pairs

).

We write w ∼ w ′ iff there exists words

w = w1,w2, . . . ,wq−1,wq = w ′ ∈ S∗

such that each wi is an elementary reduction of wi+1, or vice versa.
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An explicit description of W

We define W = S∗�∼ to be the set of equivalence classes of words.
If [w ]∼, [w ′]∼ ∈W , let w ◦ w ′ be the composed word in S∗ and

[w ]∼ · [w ′]∼ := [w ◦ w ′]∼.

This gives W the structure of a group.
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A universal property

W is equivalently characterized by the following properties:

1 We have a map S →W such that for all s, s ′ ∈ S with
m(s, s ′) 6=∞:

(ss ′)m(s,s′) = 1.

2 For each group G and each mapping ϕ : S → G satisfying the
condition

(ϕ(s)ϕ(s ′))m(s,s′) = 1 ∈ G if s, s ′ ∈ S with m(s, s ′) 6=∞,

there exists a unique group homomorphism ϕ̂ : W → G with
ϕ̂|S = ϕ.

S G

W

ϕ

ϕ̂
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Why study Coxeter groups?

Consider the group GLn of invertible n × n-matrices. Let B ⊆ GLn

be the subgroup of upper triangular matrices and Sn ⊆ GLn the set
of permutation matrices. Then

GLn = BSnB.

This is the starting point to understanding the infinite group GLn

by studying the finite group Sn.

Other reasons:

Geometry of reflections and the groups generated by them.

Knot theory, i.e. studying embeddings S1 ↪→ R3.

. . .
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Combinatorics of Coxeter Groups

1.1 Coxeter systems

1.2 Examples (leave out/skim only the examples 1.2.10 and
1.2.11).

1.3 A permutation representation

1.4 Reduced words and the exchange property

Exercises 2, 8 and 10 of Chapter 1
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