Examples in Algebraic Geometry – introduction

Felix Schremmer

September 23, 2021

- 2 Introduction to projective spaces
- 3 Assignment of talks

- Today: introduction and organization
- During the semester: Each of you will give one talk.
- We will decide the details of our weekly meetings in a minute.

- Read and understand your section. Prepare your examples and your talk.
- ≥ 2 weeks before your talk: Send a draft of your talk to prof. Viehmann or me, and arrange a personal meeting
- ≥ 1 week(s) before your talk: One of us discusses your draft with you. This meeting is compulsory.
- Give your talk, present your examples, enlighten your audience.
- After your talk, you get personal feedback.

When and where

- We have the choice between holding the seminar online or in presence.
- We have a lot of freedom choosing the timeslot.
- What are your needs/preferences regarding these choices?

Regarding your talks

- Each talk should take roughly 90 minutes. The *n*-th talk will happen most likely in the *n*-th week of the semester.
- Follow the section of Harris' textbook or find your own source.
- Please attend all talks as a courtesy to your fellow students.
- Examples are important in this seminar. Prepare them thoroughly and spend some time elaborating them in the talk
- You are always invited to ask questions to us.
- During your talk, indicate when you would prefer the audience to ask their questions.

- 2 Introduction to projective spaces
- Assignment of talks

A remark on base fields

- Algebraic geometry (for us) happens over a field K.
- For calculations/proofs, it is convenient if *K* is algebraically closed.
- For intuition/pictures, we will assume $K = \mathbb{R}$.

Affine space

The affine *n*-space \mathbb{A}^n is the vector space K^n , except that the origin $0 \in K^n$ is no longer distinguished. Those are the pictures over \mathbb{R}

- \mathbb{A}^0 : Point
- \mathbb{A}^1 : Line, infinite in both directions
- \mathbb{A}^2 : Plane
- . . .

Shortcomings of the affine spaces I

Consider the affine plane \mathbb{A}^2 .

- Any two distinct points uniquely determine a line.
- Any two distinct lines uniquely determine a point, *unless they are parallel*.

Idea: Artificially add "intersection points" of parallel lines to \mathbb{A}^2 .

Shortcomings of the affine spaces II

Perspective drawing can be modelled as a linear map

 $\mathbb{R}^3 \to \mathbb{R}^2,$

(point in the real world) \mapsto (point on the picture).

Picture suggests: The two lines "should meet" in a point p "infinitely far away". p still can be projected to the picture.

Shortcomings of the affine spaces III

The solutions to the equation $x^2 + y^2 = 1$ form a compact geometric object. The solutions to the equation $x^2 - y^2 = 1$ however are no longer compact.

Both equations can be interpreted over the projective plane \mathbb{P}^2 instead of \mathbb{A}^2 , and then everything is compact again.

Preliminary definition of projective spaces

 \mathbb{P}^n can be written as the union of \mathbb{A}^n and the points at infinity. By definition,

points at infinity := lines in
$$\mathbb{A}^n \nearrow$$
,

where \sim is the equivalence relation of lines being parallel.

Problems of this approach: Topology of \mathbb{P}^n and "lines in \mathbb{P}^{n} " are hard to define.

Official definition

 \mathbb{P}^n is the set of 1-dimensional subspaces of the vector space \mathcal{K}^{n+1} . Equivalently, $\mathbb{P}^n = \overset{\mathcal{K}^{n+1} \setminus \{0\}}{\sim}$, where

$$(x_0,\ldots,x_n) \sim (y_0,\ldots,y_n) \iff$$

 $\exists \lambda \in K \setminus \{0\}: (x_0,\ldots,x_n) = (\lambda y_0,\ldots,\lambda y_n).$

The equivalence class of (x_0, \ldots, x_n) is denoted $[x_0 : \cdots : x_n]$ ("homogeneous coordinates").

e.g. $[1:2] = [2:4] = [-3:-6] \in \mathbb{P}^1(\mathbb{R})$. There is no point [0:0].

 \mathbb{A}^n in \mathbb{P}^n

$$\begin{split} \mathbb{A}^n &\to \{ [x_0:\cdots:x_n] \in \mathbb{P}^n \mid x_0 \neq 0 \}, \\ (y_1,\ldots,y_n) &\mapsto [1:y_1:\cdots:y_n], \\ (x_1/x_0:\cdots:x_n/x_0) &\leftarrow [x_0:\cdots:x_n]. \end{split}$$

The points

$$\mathbb{P}^n \setminus \mathbb{A}^n = \{ [x_0 : \cdots : x_n] \in \mathbb{P}^n \mid x_0 = 0 \}$$

are the "points at infinity", and they correspond to points in \mathbb{P}^{n-1} , or parallelism classes in \mathbb{A}^n .

Geometric intuition

Over the reals, we can consider the *n*-sphere $\mathbb{S}^n \subset \mathbb{R}^{n+1}$:

$$\mathbb{S}^n = \{(x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \mid x_0^2 + \cdots + x_n^2 = 1\}.$$

For each one-dimensional subspace $\ell \subset \mathbb{R}^{n+1}$, the intersection $\mathbb{S}^n \cap \ell$ consists of exactly two antipodal points. We thus may identify

$$\mathbb{P}^n = \mathbb{S}^n / \sim,$$

where $x \sim y$ iff $x \in \{y, -y\}$.

₽0

and \mathbb{P}^1

 \mathbb{P}^1 can be seen as the line with an extra point at infinity added.

Most points of \mathbb{S}^2 can be projected to \mathbb{R}^2 , forming $\mathbb{A}^2 \subset \mathbb{P}^2$. The points on the equator are can be identified with \mathbb{P}^1 .

- 2 Introduction to projective spaces
- 3 Assignment of talks

Miniature overview

- Affine and projective varieties
- 2 Zariski topology and regular maps
- Ones and projections
- O Nullstellensatz and applications
- Grassmannians
- Rational maps and Blow-Ups
- O Dimensions