Mathematik in LATEX

Felix Schremmer

Technische Universität München

23.03.2021

- Mathematische Formeln einbetten
- 2 Elemente mathematischer Formeln
- Mathematik-Umgebungen

Pakete

- amsmath: Dringend empfohlen.
- amsfonts: Spezielle Schriftarten wie $\mathbb R$ und $\mathfrak R$.
- amssymb: Mathematische Symbole wie □⊋▷ ⋉.
- amsthm: Um Theoreme, Beweise etc. aufzuschreiben.
- Unzählige exotische Pakete für diverse Spezialfälle.

Formeln im Fließtext

Alles zwischen zwei \$-Zeichen wird als Formel dargestellt.

Sei
$$n>0$$
 und $x+1=4$. Sei $n>0$ und $x+1=4$.

Nummerierte Formeln

Die Umgebung equation erzeugt herausgestellte und nummerierte Formeln.

Es gilt

$$a^2 + b^2 = c^2. (1)$$

Hierbei ist...

Unnummerierte Formeln

Die Umgebung equation* erzeugt herausgestellte und *nicht* nummerierte Formeln.

Es gilt

$$a^2 + b^2 = c^2.$$

Hierbei ist...

Mehrere Formeln

Die Umgebungen gather/gather* erlauben es, mehrere Formeln untereinander zu schreiben.

```
Wir behaupten: \begin{gather}{begin}{gather}\\ A=14x+12\\ 4B-7=3\\ \begin{cases}{\begin{gather}{c}} \\ \begin{gather}{\begin{gather}{c}} \\ \
```

Wir behaupten:

$$A = 14x + 12 \tag{2}$$

$$4B - 7 = 3 \tag{3}$$

Mehrere ausgerichtete Formeln

Die Umgebungen align/align* erlauben es, mehrere Formeln ausgerichtet untereinander zu schreiben.

\begin { a \lig n * }
(a+b)(a-b) = & a^2 + ab - ab - b^2\\
= & a^2 - b^2.
\end { a \lig n * }
$$(a+b)(a-b) = a^2 + ab - ab - b^2$$

$$= a^2 - b^2.$$

(P)

Eigene Bezeichner

Der \tag-Befehl.

```
\begin{equation} a^2+b^2=c^2.\tag{P} \end{equation} a^2+b^2=c^2.
```

Komplexitätsreduktion

Ich persönlich benutze fast ausschließlich

- \$...\$,
- die Umgebung align*,
- manchmal den \tag-Befehl.

- 1 Mathematische Formeln einbetten
- 2 Elemente mathematischer Formeln
 - Einfache Elemente
 - Zusammengesetzte Elemente
 - Anpassungen
- Mathematik-Umgebungen

Ziffern und Buchstaben

- Ziffern und lateinische Buchstaben direkt eingeben.
- Griechische Buchstaben haben eigene Befehle.

LaTeX	\setminus alpha	ackslashgamma	∖Gamma
Darstellung	α	γ	Γ

Operatoren und Relationen

Für Weglassungen kann man wie folgt drei Punkte setzen:

LaTeX
$$1+2+\cdot s+15$$
 $i=1,\ 2,\ \cdot s,\ 8$ Darstellung $1+2+\cdots+15$ $i=1,\ 2,\ \ldots, 8$

Mengenlehre

LaTeX A\cap B A\cup B a\in A A\ni a
Darstellung
$$A \cap B$$
 $A \cup B$ $a \in A$ $A \ni a$

LaTeX A\subset B A\subseteq B A\supset B Darstellung $A \subset B$ $A \subseteq B$ $A \supset B$

Operatoren

 Es gibt eine Handvoll vordefinierter Operatoren, z.B. \sin f\u00fcr sin. Diese umfassen

```
\mathsf{sin}, \mathsf{cos}, \mathsf{exp}, \mathsf{min}, \mathsf{max}, \mathsf{log}, \mathsf{lim}, \mathsf{ker}, \mathsf{dim} \ .
```

Eigene Operatoren kann man in der Präambel definieren:

Texte

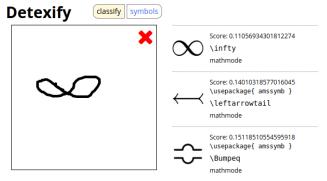
Der Befehl \text für Texte in mathematischen Gleichungen.

$$P = \{n: n \text{ ist eine Primzahl}\}$$

$$P = \{n: n \text{ ist eine Primzahl}\}$$

Pfeile

Außerdem kann man mit \xrightarrow beschriftete Pfeile zeichnen:


A\xrightarrow[\text{unten}]{\text{oben}} B
$$A \xrightarrow[\text{unten}]{} B$$

Spezielle Symbole

- Es gibt unzählige spezielle Symbole (für Mathematik und anderes), aufgeteilt auf unzählige spezialisierte LaTeX-Pakete.
- In symbols-a4.pdf werden die meisten Symbole und Pakete aufgeführt (über 200 Seiten).
- Empfehlenswert ist Detexify.

Spezielle Symbole

- Es gibt unzählige spezielle Symbole (für Mathematik und anderes), aufgeteilt auf unzählige spezialisierte LaTeX-Pakete.
- In symbols-a4.pdf werden die meisten Symbole und Pakete aufgeführt (über 200 Seiten).
- Empfehlenswert ist Detexify.

- 1 Mathematische Formeln einbetten
- 2 Elemente mathematischer Formeln
 - Einfache Elemente

 - Zusammengesetzte Elemente
 - Anpassungen
- Mathematik-Umgebungen

Arithmetik

LaTeX Darstellung	$\backslash \mathbf{frac}\{1\}\{2\}$ $\frac{1}{2}$	$\$ \sqrt{x}	$\sqrt{\sqrt[4]{x}}$
LaTeX	x^2	$e^{\{2 \setminus \mathbf{pi} \mid i\}}$ $e^{2\pi i}$	x ₋ 1
Darstellung	x ²		x ₁

Klammern

```
LaTeX (a+b) [a+b] \{1,2,3\}
Darstellung (a+b) [a+b] \{1,2,3\}
\langle a,b\rangle \langle \text{Ivert x\rvert | Vert f\rVert (a,b) |x| ||f||
```

Klammergrößen

• \left (...\ right) passt die Größen der Klammern automatisch an.

Klammergrößen

 \left (...\ right) passt die Größen der Klammern automatisch an.

 Mit \bigl, \Bigl und \Biggl kann man Klammern manuell vergrößern.

\BigI(2(a+b) \Bigr)\cdot 4
$$(2(a+b)) \cdot 4$$

Summen etc.

So wird $\sum_{k=1}^{n} k^2 zu$

$$\sum_{k=1}^{\infty} k^2$$

Summen etc.

Für das Summations-Symbol lautet die Syntax: $\sum_{\substack{untere\ Beschriftung}} (obere\ Beschriftung)$

So wird $\sum_{k=1}^{n} k^2 zu$

$$\sum_{k=1}^{n} k^2.$$

Entsprechend funktionieren folgende Operatoren:

Beschriftungen anpassen

• Die Position der Beschriftungen unterscheidet sich bei herausgestellten und Fließtext-Formeln. Vergleiche $\sum_{k=1}^{n} k^2$ mit

$$\sum_{k=1}^{n} k^2$$

 Mit dem Befehl \sum\nolimits kann man das erste Verhalten erzwingen, mit \sum\limits das zweite.

Beschriftungen anpassen

• Die Position der Beschriftungen unterscheidet sich bei herausgestellten und Fließtext-Formeln. Vergleiche $\sum_{k=1}^n k^2$ mit

$$\sum_{k=1}^{n} k^2.$$

- Mit dem Befehl \sum\nolimits kann man das erste Verhalten erzwingen, mit \sum\limits das zweite.
- Der Befehl \substack erlaubt mehrzeilige Beschriftungen:

$$\sum_{\substack{i \leq 4 \\ j \leq 5}} i \cdot cdot j$$

Fallunterscheidungen

Die cases-Umgebung erlaubt es, Fallunterscheidungen darzustellen. Innerhalb dieser Umgebung kann man $\setminus \setminus$ für Zeilenumbrüche und & für Ausrichtung benutzen.

```
\lvert x\rvert = \begin{cases} x, & x\geq 0,\\
-x, & x<0. \end{cases}
```

$$|x| = \begin{cases} x, & x \ge 0, \\ -x, & x < 0. \end{cases}$$

Matrizen

Mit der Umgebung pmatrix. In dieser Umgebung werden \\ und & "wie üblich" verwendet.

Es gibt folgende Varianten zu pmatrix, die genau gleich verwendet werden:

LaTeX	bmatrix		vmatrix		X :	matrix		${\tt smallmatrix}$
Darstellung	a c	b d	a c	b d		a C		a b c d

- Mathematische Formeln einbetten
- 2 Elemente mathematischer Formeln
 - Einfache Elemente
 - Zusammengesetzte Elemente
 - Anpassungen
- Mathematik-Umgebungen

Buchstabenzusätze

```
LaTeX f' \hat f \check f \tilde f \overline f Darstellung f' \hat{f} \check{f} \check{f} \check{f} f

LaTeX \dot f \overrightarrow f \not\subset Darstellung f \not
```

Schriftarten

Abstände

- Leerzeichen und Zeilenumbrüche in Mathematik-Bereichen haben keinerlei Bedeutung. \$a b\$ und \$ab\$ werden identisch dargestellt.
- Folgende Befehle fügen horizontale Abstände ein (von klein bis groß):

• Der Befehl \! fügt einen *negativen* Abstand ein.

- 1 Mathematische Formeln einbetten
- 2 Elemente mathematischer Formeln
- Mathematik-Umgebungen

Theorem-Umgebungen definieren

 $\label{lem:metheorem} \begin{tabular}{ll} Mit dem Befehl $$ \newtheorem $$\{$ \textit{Umgebungsname}\}$ & Anzeigename $$\}$ werden Theorem-Umgebungen in der Präambel definiert. \\ \end{tabular}$

```
\newtheorem{lem}{Lemma}
\begin{document}
\begin{lem}
Sei $p$ eine Primzahl\ldots
\end{lem}
```

Lemma 1. Sei p eine Primzahl...

Theoreme ohne Nummerierung

Für Theoreme ohne Nummerierung nimmt man \newtheorem*.

```
\newtheorem*{lemma*}{Lemma}
\begin{document}
\begin{lemma*}
$f$ ist bijektiv.
\end{lemma*}
Lemma. f ist bijektiv.
```

Nummerierung nach Abschnitten

Um alle die Theoreme gemäß ihrem Kapitels/Abschnitt/Unterabschnitt zu Nummerieren, gibt man einen optionalen dritten Parameter an \newtheorem.

```
\newtheorem{theorem}{Satz}[section]
\begin{document}
\section{Das Theorem}
\begin{theorem}$A$ ist nicht leer.\end{theorem}
```

1 Das Theorem

Satz 1.1. A ist nicht leer.

Gemeinsame Zähler

Um verschiedene Theorem-Typen (z.B. Lemmata und Sätze) gemeinsam zu nummerieren, gibt man einen optionalen zweiten Parameter an \newtheorem.

```
\newtheorem { lemma } { Lemma } \newtheorem { lemma } { Lemma } { Satz } \newtheorem { document } { begin { document } } f(0) = 0 . \newtheorem } f(n) = 0 . \newtheorem } theorem } f(n) = 0 . \newtheorem } theorem } Lemma 1. f(0) = 0.
```

Satz 2. f(n) = 0 für alle $n \ge 0$.

Benannte Theoreme

Einer Theorem-Umgebung kann man mit einem optionalen Parameter auf einen bekannten Namen oder den Ursprung des Theorems verweisen.

```
\begin{lemma*}[Euler] $e^{\phi i} = -1$. \\ end{lemma*}
```

Lemma (Euler). $e^{\pi i} = -1$.

Theorem-Stile

```
Weniger auffällige Theorem-Umgebungen erreicht man mit dem
Befehl \theoremstyle \{ definition \} oder sogar
\theoremstyle{remark}.
\theoremstyle { definition }
\newtheorem { def } { Definition }
\theoremstyle { remark }
\newtheorem { rem } [ def ] { Bemerkung }
\ begin { document }
\begin{def}Eine \emph{Gruppe} ist\ldots\end{def}
\begin{rem} Bekanntlich gilt \ldots\end{rem}
Definition 1. Eine Gruppe ist...
```

Bemerkung 2. Bekanntlich gilt...

Beweise

Die proof-Umgebung steht glücklicherweise bereits zur Verfügung.

```
\newtheorem { theorem } { Satz } \ begin { document } \ begin { theorem } \  $a^2+b^2 = c^2$. \ end { theorem } \ begin { proof } Geometrie! \ end { proof } \  $atz 1. a^2+b^2=c^2.
```

Beweis. Geometrie!

Verweise

- Mit dem Befehl \label{Name} irgendwo in einer nummerierten Theorem-Umgebung gibt man dem Theorem einen internen Namen.
- Mit dem Befehl \ref{Name} kann man darauf verweisen. Es wird automatisch die korrekte Nummer eingesetzt.
- Der selbe Mechanismus funktioniert auch, um auf nummerierte Formeln, Kapitel, Abschnitte, Unterabschnitte und Listenpunkte zu verweisen.

Verweise - Beispiel

Aus Satz 1.2 folgt

$$\phi > 3. \tag{1}$$

Aus Gleichung (1) folgt...

Lesenswertes

- Mathematik Allgemein: amsldoc.pdf
- Theorem-Umgebungen: amsthdoc.pdf