Technische Universität München Zentrum Mathematik

Winter term 2017/18 Exercise sheet 8

Prof. Dr. Eva Viehmann Dr. Paul Hamacher

Linear algebraic groups (MA 5113)

Exercise 29. Consider the natural action of GL_n on \mathbb{A}^n . Compute the orbits, as well as the partial order defined in Exercise 11, of the following subgroups of GL_n and draw the orbits for n = 2.

(a) GL_n .

(b) B, the subgroup of upper triangular matrices.

- (c) U, the subgroup of unipotent upper triangular matrices.
- (d) T, the diagonal torus.

Exercise 30. Let U be a unipotent group over the (algebraically closed) field k. Show that

- (a) if char k = 0, then U is connected.
- (b) if char k = p > 0, then the number of irreducible components of U is a power of p.

Exercise 31. Let G be a linear algebraic group and let $G^{ab} \coloneqq G/G^{der}$ and $\pi \colon G \to G^{ab}$ the canonical projection. Show that G^{ab} is Abelian and satisfies the following universal property. For any homomorphism of linear algebraic groups $\varphi \colon G \to H$ with H Abelian there exists a unique morphism φ^{ab} such that the diagram

commutes.

Exercise 32 (Decomposition series). Calculate the decomposition series of the following linear algebraic groups.

(a) B.

(b) GL_n .

You may use without proof that $SL_n(k)$ is generated by the elementary matrices $E_{i,j}(\lambda)$ for $1 \leq i \neq j \leq n$ and $\lambda \in k$, where $E_{i,j}(\lambda)$ denotes the matrix whose entries are 1 on the diagonal, λ at the (i, j)-coordinate and 0 otherwise.

Deadline: Friday, 15th December, 2017

If you have questions regarding the exercises, please send an email to hamacher@ma.tum.de. The exercise classes are Fridays, 10-12 in room MI 02.08.020. Further information about our lectures and exercises are available under

http://www-m11.ma.tum.de/viehmann/viehmann-linear-algebraic-groups/.