Technische Universität München Zentrum Mathematik

Prof. Dr. Eva Viehmann Dr. Paul Hamacher

Linear algebraic groups (MA 5113)

Exercise 41 (Reflections and the Weyl group). Let G be a linear algebraic group with maximal torus T and Weyl group W. Let $P_0 \subset X_*(T)$ denote the set of weights for the adjoint action of T on Lie G for which the group G_{α} is non solvable.

(a) Prove that P_0 is stable under the W-action on $X^*(T)$.

(b) Show that for every $\alpha \in P_0, w \in W$ we have $s_{w(\alpha)} = w s_{\alpha} w^{-1}$

Classical linear algebraic groups: We consider the symplectic group Sp_{2n} and the special orthogonal group SO_n. We briefly recall their definition. Let $J \coloneqq (\delta_{i,n+1-j})_{i,j} \in \mathrm{GL}_n$ be the matrix with entries 1 on the antidiagonal and 0 otherwise and let $J_a \coloneqq \begin{pmatrix} 0 & -J \\ J & 0 \end{pmatrix} \in \mathrm{GL}_{2n}$. Then we may define

$$SO_n \coloneqq \{g \in SL_n \mid g^T \cdot J \cdot g = J\}$$
$$Sp_{2n} \coloneqq \{g \in GL_{2n} \mid g^T \cdot J_a \cdot g = .$$

$$p_{2n} \coloneqq \{g \in \mathrm{GL}_{2n} \mid g^T \cdot J_a \cdot g = J_a\},\$$

see also Exercise 36(a) (a similar argument can also be used for symplectic forms). It is known that SO_n and Sp_n are connected and that their Lie algebras are given by

$$\mathfrak{so}_n = \{ A \in k^{n \times n} \mid A^T \cdot J + J \cdot A = 0 \}$$

$$\mathfrak{sp}_{2n} = \{ A \in k^{2n \times 2n} \mid A^T \cdot J_a + J_a \cdot A = 0 \}$$

see Exercise 19.

Exercise 42 (Weyl group of SO_n). Let $T \subset SO_n$ be the subgroup of diagonal elements.

- (a) Prove that T is a maximal torus (*Hint:* Exercise 36(b)) and give an explicit desciption of $X^*(T)$ and $X_*(T)$.
- (b) Determine the set $P \subset X^*(T)$ of weights for the adjoint action of T on \mathfrak{so}_n .
- (c) Calculate the Weyl group of SO_n (*Hint:* Theorem 4.1.10)

Exercise 43 (Weyl group of Sp_{2n}). Let $T \subset \text{Sp}_{2n}$ be the subgroup of diagonal elements. You can use without proof that T is a maximal torus.

- (a) Give an explicit description of $X^*(T)$ and $X_*(T)$.
- (b) Determine $X^*(T)$ and the set $P \subset X^*(T)$ of weights for the adjoint action of T on \mathfrak{sp}_{2n} .
- (c) Calculate the Weyl group of Sp_{2n} .

Exercise 44 (Groups of dimension 2). Let G be a connected linear algebraic group of dimension 2. Prove that G is solvable.

Deadline: Friday, 21st January, 2017

If you have questions regarding the exercises, please send an email to hamacher@ma.tum.de. The exercise classes are Fridays, 10-12 in room MI 02.08.020. Further information about our lectures and exercises are available under

http://www-m11.ma.tum.de/viehmann/viehmann-linear-algebraic-groups/.

Winter term 2017/18Exercise sheet 11