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In Exercise 45 you may use the following result from algebraic geometry without proof.

Theorem. Let f : X → Y be a morphism of varieties such that for every y ∈ Y the fibre dim f−1(y)
das dimension d ∈ N (in particular f is surjective). Then dimX = dimY + d.

Exercise 45 (Extensions of linear algebraic groups). Let φ : G → H be a morphism of linear
algebraic group.

(a) Show that dimG = dim kerφ+ dim imφ

(b) Assume that the induced morphism G→ imφ is separable. Prove that

ker dφe = Te(kerφ)

im dφe = Te(imφ)

Exercise 46 (Central extensions and root data). Let φ : G→ G′ be a surjective, separable morph-
ism of linear algebraic groups such that Z := kerφ is diagonalisable and is contained in the center
of G. Let T be a maximal torus of G, then T ′ := φ(T ) is a maximal torus of G′ (see Exercise 40).
Denote by (X,R,X∨, R∨) the root datum of G and by (X ′, R′, X ′∨, R′∨) the root datum of G′. Let
φX : X ′ → X and φX∨ : X∨ → X be the homomorphisms defined by composition with φ.

(a) Show that φX∨ is the dual of φX with respect to 〈 , 〉.
(b) Prove that φX and φX∨ induce bijections between R and R′, and R∨ and R′∨ respectively.

Remark: In other words, we can identify the roots (and coroots, respectively) of G and G′ pre-
serving the pairing 〈 , 〉; only the surrounding Z-modules change. One says that the root data have
the same type.

Exercise 47 (Geometry of the Weyl group). Let (X,R,X∨, R∨) be a root datum and ( , ) be a

W-invariant bilinear form on V := X ⊗ R. Recall that sα(x) = x − 2 (x,α)
(α,α) · α (see script, right

before Lemma 4.2.5).

(a) Show that W ⊂ O(V ).

(b) Given two roots α, β ∈ R, show that their angle is either 0◦, 30◦, 60◦, 90◦, 120◦, 150◦ or 180◦.

(c) Assume we have chosen a set of positive roots R+ ⊂ R as in Definition 4.3.5. Prove that for any
two linearly independent roots α, β ∈ R, there exists a w ∈W such that w(α) > 0, w(β) > 0.



Exercise 48 (Classification of root systems of rank 2). Let (X,R,X∨, R∨) be a root datum and
let α, β ∈ R linearly independent. By Lemma 4.4.1, there exists an a ∈ {0, 1, 2, 3} such that if after
interchanging α and β, and/or replacing α by −α, we may assume that 〈α, β∨〉 = −a, 〈β, α∨〉 = −1
if a 6= 0 and 〈α, β∨〉 = 〈β, α∨〉 = 0 if a = 0 . Prove that the set S descibed below is contained in
R and stable under sα and sβ .

(a) If a = 0, S = {±α,±β},
(b) if a = 1, S = {±α,±β,±(α+ β)},
(c) if a = 2, S = {±α,±β,±(α+ β),±(2α+ β)} and

(d) if a = 3, S = {±α,±β,±(α+ β),±(2α+ β),±(3α+ β),±(3α+ 2β)}.
Remark: Note that S forms a root system. We will later see that if R ⊂ Zα + Zβ, then we must
have R = S. Thus the list above contains all root systems of rank 2.
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