Technische Universität München Zentrum Mathematik

Winter term 2017/18 Exercise sheet 12

Prof. Dr. Eva Viehmann Dr. Paul Hamacher

Linear algebraic groups (MA 5113)

In Exercise 45 you may use the following result from algebraic geometry without proof.

Theorem. Let $f: X \to Y$ be a morphism of varieties such that for every $y \in Y$ the fibre dim $f^{-1}(y)$ das dimension $d \in \mathbb{N}$ (in particular f is surjective). Then dim $X = \dim Y + d$.

Exercise 45 (Extensions of linear algebraic groups). Let $\phi: G \to H$ be a morphism of linear algebraic group.

- (a) Show that $\dim G = \dim \ker \phi + \dim \operatorname{im} \phi$
- (b) Assume that the induced morphism $G \to \operatorname{im} \phi$ is separable. Prove that

 $\ker d\phi_e = T_e(\ker \phi)$ $\operatorname{im} d\phi_e = T_e(\operatorname{im} \phi)$

Exercise 46 (Central extensions and root data). Let $\phi: G \to G'$ be a surjective, separable morphism of linear algebraic groups such that $Z := \ker \phi$ is diagonalisable and is contained in the center of G. Let T be a maximal torus of G, then $T' := \phi(T)$ is a maximal torus of G' (see Exercise 40). Denote by $(X, R, X^{\vee}, R^{\vee})$ the root datum of G and by $(X', R', X'^{\vee}, R'^{\vee})$ the root datum of G'. Let $\phi_X: X' \to X$ and $\phi_{X^{\vee}}: X^{\vee} \to X$ be the homomorphisms defined by composition with ϕ .

(a) Show that $\phi_{X^{\vee}}$ is the dual of ϕ_X with respect to \langle , \rangle .

(b) Prove that ϕ_X and $\phi_{X^{\vee}}$ induce bijections between R and R', and R^{\vee} and R^{\vee} respectively.

Remark: In other words, we can identify the roots (and coroots, respectively) of G and G' preserving the pairing \langle , \rangle ; only the surrounding Z-modules change. One says that the root data have the same type.

Exercise 47 (Geometry of the Weyl group). Let $(X, R, X^{\vee}, R^{\vee})$ be a root datum and (,) be a W-invariant bilinear form on $V := X \otimes \mathbb{R}$. Recall that $s_{\alpha}(x) = x - 2\frac{(x,\alpha)}{(\alpha,\alpha)} \cdot \alpha$ (see script, right before Lemma 4.2.5).

- (a) Show that $W \subset O(V)$.
- (b) Given two roots $\alpha, \beta \in R$, show that their angle is either $0^{\circ}, 30^{\circ}, 60^{\circ}, 90^{\circ}, 120^{\circ}, 150^{\circ}$ or 180° .
- (c) Assume we have chosen a set of positive roots $R^+ \subset R$ as in Definition 4.3.5. Prove that for any two linearly independent roots $\alpha, \beta \in R$, there exists a $w \in W$ such that $w(\alpha) > 0, w(\beta) > 0$.

Exercise 48 (Classification of root systems of rank 2). Let $(X, R, X^{\vee}, R^{\vee})$ be a root datum and let $\alpha, \beta \in R$ linearly independent. By Lemma 4.4.1, there exists an $a \in \{0, 1, 2, 3\}$ such that if after interchanging α and β , and/or replacing α by $-\alpha$, we may assume that $\langle \alpha, \beta^{\vee} \rangle = -a, \langle \beta, \alpha^{\vee} \rangle = -1$ if $a \neq 0$ and $\langle \alpha, \beta^{\vee} \rangle = \langle \beta, \alpha^{\vee} \rangle = 0$ if a = 0. Prove that the set S described below is contained in R and stable under s_{α} and s_{β} .

- (a) If $a = 0, S = \{\pm \alpha, \pm \beta\},\$
- (b) if $a = 1, S = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta)\},\$

(c) if a = 2, $S = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (2\alpha + \beta)\}$ and

(d) if a = 3, $S = \{\pm \alpha, \pm \beta, \pm (\alpha + \beta), \pm (2\alpha + \beta), \pm (3\alpha + \beta), \pm (3\alpha + 2\beta)\}.$

Remark: Note that S forms a root system. We will later see that if $R \subset \mathbb{Z}\alpha + \mathbb{Z}\beta$, then we must have R = S. Thus the list above contains all root systems of rank 2.

Deadline: Friday, 28th January, 2017

If you have questions regarding the exercises, please send an email to hamacher@ma.tum.de. The exercise classes are Fridays, 10-12 in room MI 02.08.020. Further information about our lectures and exercises are available under

http://www-m11.ma.tum.de/viehmann/viehmann-linear-algebraic-groups/.