Technische Universität München Zentrum Mathematik

Winter term 2017/18 Exercise sheet 13

Prof. Dr. Eva Viehmann Dr. Paul Hamacher

Linear algebraic groups (MA 5113)

Exercise 49 (The symmetric group as Coxeter group). Let $G = GL_n$ and denote by $T \subset B \subset G$ the diagonal torus and the Borel subgroup of upper triangular matrices, respectively. Then the Weyl group of (G, T) is the symmetric group \mathfrak{S}_n by Exercise 10.

(a) Let $S \subset \mathfrak{S}_n$ be the set of simple reflections corresponding to B. Prove that S equals the set of adjacent transpositions $\{(i \ i+1) \mid i=1, \ldots n-1\}$.

(b) Let $w \in \mathfrak{S}_n$. Prove that $\ell(w) = \#\{(i,j) \in \{1,\ldots,n\}^2 \mid i < j, \sigma(i) > \sigma(j)\}$

Exercise 50 (The Weyl group of Sp_{2n}). Let $G = \text{Sp}_{2n}$ and denote by $T \subset B \subset G$ the diagonal torus and the Borel subgroup of upper triangular matrices, respectively. Then the Weyl group W of (G,T) is isomorphic to $\{w \in \mathfrak{S}_n \mid w(2n+1-i) = 2n+1-w(i)\}$ by Exercise 43.

- (a) Show that W is isomorphic to the group of automorphisms of $\{\pm 1, \ldots, \pm n\}$ satisfying $\sigma(-a) = -\sigma(a)$ for all a.
- (b) Let $S \subset W$ be the set of simple reflections corresponding to B. Prove that

$$S = \{(i \ i+1)(2n-i \ 2n+1-i) \mid i=1,\ldots,n-1\} \cup \{(n \ n+1)\}.$$

(c) For each pair of simple reflections s_i, s_j compute the order of $s_i s_j$.

Exercise 51 (Inner and outer automorphisms). Let G be semi-simple reductive group. We fix a splitting of G, that is a triple $(B, T, \{u_{\alpha}\}_{\alpha \in D})$, where $T \subset B \subset G$ is a maximal torus and a Borel subgroup, respectively; $u_{\alpha} \in U_{\alpha}$ where we denote by D the basis of the root system associated to B. Moreover, we denote by $\Phi = (X, R, D, X^{\vee}, R^{\vee}, D^{\vee})$ the root datum with basis associated to (G, B, T).

- (a) Show that G acts simply transitively on the set of splittings by conjugation. Conclude that any automorphism $\phi \in \operatorname{Aut}(G)$ can be written uniquely as $\phi = c_g \circ \phi_0$, where c_g denotes the conjugation with an element $g \in G$ (such an automorphism is called inner automorphism) and $\phi_0 \in \operatorname{Aut} G$ fixes $(B, T, \{u_\alpha\}_{\alpha \in D})$.
- (b) Denote by $\operatorname{Out}(G)$ the set of automorphisms $\phi_0 \in \operatorname{Aut}(G)$ which fix $(B, T, \{u_\alpha\}_{\alpha \in D})$. Prove that any $\phi_0 \in \operatorname{Out}(G)$ induces an automorphism of Φ and that the resulting homomorphism $\operatorname{Out}(G) \to \operatorname{Aut} \Phi$ is injective.
- (c) Show that for $G = SL_n$, one has $\operatorname{Aut} \Phi \cong \mathbb{Z}/2\mathbb{Z}$. Give an example of an automorphism $\phi_0 \in \operatorname{Out}(SL_n)$ (for a splitting of your choice) such that it corresponds to the non-trivial automorphism in $\operatorname{Aut} \Phi$.

Exercise 52 (Bruhat decomposition for GL_n). Let $G = GL_n$ and $B \subset G$ the Borel subgroup of upper triangular matrices. Recall that G/B can be identified with the parameter space of flags $V_1 \subset \ldots \subset V_{n-1} \subset k^n$ with dim $V_i = i$.

- (a) Describe the canonical G-action on G/B in terms of flags.
- (b) Prove that two flags $(W_{\bullet}), (W'_{\bullet}) \in G/B$ lie in the same B-orbit if and only if for every i, j

 $\dim W_i \cap V_j = \dim W'_i \cap V_j$

(c) Give explicit conditions on the matrix entries describing the six B-double cosets for n = 3.

Deadline: Friday, 4th February, 2017

If you have questions regarding the exercises, please send an email to hamacher@ma.tum.de. The exercise classes are Fridays, 10-12 in room MI 02.08.020. Further information about our lectures and exercises are available under

http://www-m11.ma.tum.de/viehmann/viehmann-linear-algebraic-groups/.