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Exercise 5 (Principal open sets as affine varieties). Let (X,OX) be an affine variety over an algeb-
raically closed field k and fix an element f ∈ k[X]. Let (Y,OY ) be the affine variety corresponding
to the reduced affine k-algebra k[X]f = OX(D(f)). Prove that (Y,OY ) ∼= (D(f),OX |D(f)

), in

particular (D(f),OX |D(f)
) is an affine variety.

Exercise 6 (Properties of varieties). The following properties distinguish the varieties from the
prevarieties.

(a) Let X
f

⇒
g

Y be morphisms of prevarieties. Show that it the set {x ∈ X | f(x) = g(x)}, is

closed in X if Y is a variety but that it is not necessarily closed if Y is only a prevariety.

(b) Let f : X → Y be a morphism of prevarieties. Show that the graph of f , that is the set
Γf := {(x, y) ∈ X × Y | y = f(x)} is closed in X × Y if Y is a variety but that it is not
necessarily closed if Y is only a prevariety.

Exercise 7 (Centralizer and Normalizer). Let G be an algebraic group and H ⊂ G a sub-
set.

(a) Show that the conjugation G×G→ G, (g, x) 7→ gxg−1 is a morphism of varieties.

(b) Prove that the normalizer and centralizer of H in G, given by

NG(H) := {g ∈ G | gHg−1 = H}
ZG(H) := {g ∈ G | ∀h ∈ H : gh = hg}

are closed subgroups of G, where H is assumed to be a subgroup when considering its normal-
izer.

Exercise 8 (Normalizer of the diagonal torus). Denote by T ⊂ GLn the subgroup of diagonal
matrices.

(a) Show that the normalizer NG(T ) consists exactly of all generalised permutation matrices, i.e.
the matrices which have exactly one nonzero entry in each row and each column.

(b) Determine the connected components of NG(T ).
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If you have any questions regarding the exercises, please send an email to hama-
cher@ma.tum.de. The exercise classes are Fridays, 10-12 in room MI 02.08.020. Fur-
ther information about our lectures and exercises are available under http://www-m11.
ma.tum.de/viehmann/viehmann-linear-algebraic-groups/.
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