Technische Universität München Zentrum Mathematik

Winter term 2020/21 Exercise sheet 2

Dr. Paul Hamacher

Abelian varieties (MA 5115)

Exercise 1 (The unit component). Let G be an algebraic group and let $G^0 \subset G$ be the connected component containing e.

- (a) Show that G^0 is an algebraic group and that it is normal in G.
- (b) Show that all connected components of G are isomorphic as varieties

Exercise 2 (Kernel and image). Let $\varphi \colon G_1 \to G_2$ be a homomorphism of algebraic groups.

- (a) Show that $\ker \varphi := \{g \in G_1 \mid \varphi(g) = 0\} \subset G_1$ is a closed algebraic subgroup.
- (b) Assume that G_1 is proper. Show im $\varphi := \{\varphi(g) \mid g \in G_1\} \subset G_2$ is a closed algebraic subgroup. Can you show this without assuming that G_1 is proper?
- (c) Now assume that G_1 is an Abelian variety. Show that $(\ker \varphi)^0$ and $\operatorname{im} \varphi$ are also Abelian varieties.
- (d) Assume that char k = p > 0 and let $\mathbb{G}_m = (k \setminus \{0\}, \cdot)$ denote the multiplicative group. Calculate ker φ and im φ for $\varphi : \mathbb{G}_m \to \mathbb{G}_m, x \mapsto x^p$. Can you see a problem ? Can you solve it ?

Deadline: Monday, 16th November, 2020