Technische Universität München Zentrum Mathematik

Winter term 2020/21 Exercise sheet 3

Dr. Paul Hamacher

Abelian varieties (MA 5115)

Exercise 1. We have seen in the lecture that every elliptic curve can be written in the form \mathbb{C}/Λ where Λ is a full lattice of \mathbb{C} . We will use this description to parametrise the isomorphism classes of elliptic curves.

- (a) Prove that \mathbb{C}/Λ and \mathbb{C}/Λ' are isomorphic if and only if Λ and Λ' are homothetic to each other, i.e. $\Lambda' = a\Lambda$ for an $a \in \mathbb{C}$.
- (b) Prove that every full lattice $\Lambda \in \mathbb{C}$ is homothetic the lattice $\langle 1, \tau \rangle_{\mathbb{Z}}$ spanned by 1 and τ for some $\tau \in \mathbb{C}$ with $\operatorname{Im} \tau > 0$, i.e. positive imaginary part.
- (c) Prove that two lattices $\langle 1, \tau \rangle_{\mathbb{Z}}$ and $\langle 1, \tau' \rangle_{\mathbb{Z}}$ are homothetic if and only if there exists $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ such that $\tau' = \frac{a\tau + b}{c\tau + d}$.

Altogether, we have shown that the quotient $\mathbb{H}/\mathrm{SL}_2(\mathbb{Z})$ parametrises the moduli space of elliptic curves over \mathbb{C} , where $\mathbb{H} \coloneqq \{z \in \mathbb{C} \mid \mathrm{Im} \, z > 0\}$ denote the upper half plane.

Exercise 2. Let A_1, A_2 be two Abelian manifolds over \mathbb{C} of dimensions g_1, g_2 .

- (a) Show that $\text{Hom}(A_1, A_2)$ is a free \mathbb{Z} -module of rank no larger than $4g_1g_2$. Can you find a better upper bound ?
- (b) Now assume that A_1, A_2 are elliptic curves, i.e. $g_1 = g_2 = 1$. Find an example where $\operatorname{Hom}(A_1, A_2) = 0$, $\operatorname{Hom}(A_1, A_2) \cong \mathbb{Z}$ and an example where $\operatorname{Hom}(A_1, A_2) \cong \mathbb{Z}^2$.

Deadline: Monday, 23rd November, 2020