Technische Universität München Zentrum Mathematik

Winter term 2020/21 Exercise sheet 4

Dr. Paul Hamacher

Abelian varieties (MA 5115)

Exercise 1. An important special case of a homomorphism of Abelian varieties is an isogeny, that is a surjective homomorphism $\varphi \colon A \to B$ with finite kernel. In this exercise, we will study isogenies over the base field \mathbb{C} .

(a) Let A be a complex torus, and $G \subset A$ be a finite group. Show that up to there exists an isogeny $\varphi: A \to A'$ with ker $\varphi = G$ and that it satisfies the following universal property. For every homomorphism of complex tori $\psi: A \to B$ with $G \subset \ker \psi$, there exists a unique homomorphism $\overline{\psi}: A' \to B$ such that the following diagram commutes.

This holds true even when B is any complex Lie group (you don't have to prove this), thus φ defines the quotient object $A \to A/G$.

(b) Let $\varphi \colon A \to A'$ be an isogeny and let $n \coloneqq \ker \varphi$. Show that there exists a unique isogeny $\varphi^{\vee} \colon A' \to A$ such that $\varphi^{\vee} \circ \varphi \colon A \to A$ is the multiplication by n. Also show that $\varphi^{\vee \vee} = \varphi$.

Exercise 2. Prove the following handy facts about line bundles. In the following let X be a variety (or scheme).

- (a) Let $\mathscr{L}_1, \mathscr{L}_2 \in \operatorname{Pic}(X)$ and $\alpha \colon \mathscr{L}_1 \to \mathscr{L}_2$ be a surjective morphism of \mathscr{O}_X -modules. Show that α is an isomorphism.
- (b) Show that a line bundle $\mathscr{L} \in \operatorname{Pic}(X)$ is trivial if and and only if it has a section $s \in \mathscr{L}(X)$ such that $V(s) = \emptyset$.
- (c) Now assume that X is a proper variety. Prove that a line bundle $\mathscr{L} \in \operatorname{Pic}(X)$ is trivial if and and only if both $\mathscr{L}(X), \mathscr{L}^{-1}(X) \neq \{0\}$ (Hint: $O_X(X) = k$)

Deadline: Monday, 30th November, 2020