Technische Universität München Zentrum Mathematik

Dr. Paul Hamacher

Abelian varieties (MA 5115)

As usual, we work over an algebraically closed field k.

Exercise 1. On the last exercise sheet, we studied the morphism $\phi_{\mathscr{L}}: A(k) \to \operatorname{Pic} A, x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1}$. In this exercise, we give a more explicit description in the case of a onedimensional Abelian variety E (i.e. elliptic curves). For this recall that the degree of a divisor $D = \sum n_i [x_i] \in Z^1(E)$ is defined as deg $D = \sum n_i$.

- (a) Let D be a divisor of degree d. Show that D is equivalent to a divisor of the form $[x]+(d-1)\cdot[0]$ with $x \in E(k)$. Prove that x is uniquely determined if $d \neq 0$.
- (b*) Can you show that x is uniquely determined also for d = 0?
- (c) Deduce that for $\mathscr{L} = \mathscr{O}([0])$, the map $\phi_{\mathscr{L}}$ defines an isomorphism $E(k) \xrightarrow{\sim} \operatorname{Pic}^{0}(E)$ (the latter consisting of line bundles $\mathscr{O}(D)$ with deg D = 0).
- (d) Deduce from the statement above that $\phi_{\mathcal{O}(D)}$ is the zero map if and only if deg D = 0.

Exercise 2 (Pullback of divisors). Let $\varphi: X \to Y$ be a dominant morphism of irreducible smooth varieties (in particular we get a morphism on fields of rational functions $\varphi^*: k(Y) \to k(X)$). Recall that the pullback defines a group homomorphism

$$\varphi^* \colon \operatorname{Pic}(Y) \to \operatorname{Pic}(X), \mathscr{L} \mapsto \varphi^* \mathscr{L}.$$

- (a) Give a (formal) definition of the pull-back $\varphi^*(D)$ of a divisor $D \in Z^1(Y)$ using the forllowing (informal) description of $\varphi^*(D)$. "After passing to an open cover, we may assume $D = \operatorname{div}(f)$ for $f \in K(Y)$. Then define $\varphi^*D \coloneqq \operatorname{div}(\varphi^*(f))$."
- (b) Now assume that X and Y are proper. Hence we know that $\operatorname{Cl}(X) \cong \operatorname{Pic}(X), D \mapsto \mathscr{O}(D)$. Show that $\mathscr{O}(\varphi^*D) \cong \varphi^*\mathscr{O}(D)$, i.e. the two notions of pullback are compatible.

Deadline: Monday, 21st December, 2020

Winter term 2020/21 Exercise sheet 7