Technische Universität München Zentrum Mathematik

Winter term 2020/21 Exercise sheet 8

Dr. Paul Hamacher

Abelian varieties (MA 5115)

As usual, we work over an algebraically closed field k.

We had seen in the lecture that for any finite subgroup $G \subset A(k)$ of an Abelian variety, the geometric quotient $A \to A /\!\!/ G$ is an isogeny with (schematic) kernel G. In the first exercise, we are proving the converse, i.e. that if $\varphi \colon A \to A'$ is an isogeny of Abelian varieties with $(\ker \varphi)_{sch} = G$, a finite algebraic group, then $A' \cong A /\!\!/ G$. Then, in the second exercise, we prove that these are precisely the étale isogenies.

Exercise 1. Let A be an Abelian variety and $G \subset A$ be a finite algebraic group (i.e. a finite closed subgroup variety).

(a) As preparation show the that the degree of an isogeny is multiplicative: Let $\varphi \colon A \to A'$ and $\varphi' \colon A' \to A''$ be isogenies. Prove that $\varphi' \circ \varphi$ is an isogeny of degree

$$\deg(\varphi' \circ \varphi) = \deg \varphi' \cdot \deg \varphi.$$

(b) Now let $\varphi: A \to A'$ be a morphism with $(\ker \varphi)_{sch} = G$. Show that there exists a unique isogeny $\varphi': A \not|\!/ G \to A'$ such that the diagram

commutes. Moreover deg $\varphi' = 1$.

(c) Prove that an isogeny is an isomorphism if and only if it has degree 1. Deduce that there exists a (unique) isomorphism $A \not | G \cong A'$, which identifies φ and π .

Exercise 2. Before we prove the main statement, we need two results about tangent spaces of algebraic groups.

- (a) Let G be a finite group scheme over Spec k. Show that G is an algebraic group (i.e. reduced) if and only if $T_e G = \{0\}$.
- (b) Let $\varphi \colon H \to H'$ be a morphism of algebraic groups with $(\ker \varphi)_{sch} = K$. Show that

$$\ker((d\varphi)_e \colon T_e H \to T_e H') = T_e K.$$

(c) Deduce from (a) and (b) that an isogeny $\varphi \colon A \to A'$ of Abelian varieties is étale if and only if $(\ker \varphi)_{sch}$ is reduced.

Deadline: Monday, 25th January, 2021