Abgabe: 2.7.2015 **Übungen Algebra II**

Sommersemester 2015

1. Ganze Morphismen und Tensorprodukte.

Sei $f\colon S\to S'$ ein Homomorphismus von R-Algebra und sei T eine R-Algebra. Angenommen, f ist ganz. Zeige, dass

Blatt 11

$$f \otimes \operatorname{id}_T \colon S \otimes_R T \to S' \otimes_R T$$

auch ganz ist.

2. Bewertungsringe.

Sei R ein Bewertungsring und K sein Quotientenkörper. Dann ist $R^\times\subseteq K^\times$ eine Untergruppe. Betrachte den Homomorphismus

$$v \colon K^{\times} \to \Gamma := K^{\times}/R^{\times}.$$

(1) Sei $\xi, \eta \in \Gamma$. Wähle Repräsentanten $x, y \in K^{\times}$ von ξ, η . Definiere

$$\xi \ge \eta$$
 genau dann wenn $xy^{-1} \in R$.

Zeige, dass \geq wohldefiniert ist und eine totale Ordnung auf Γ definiert.

(2) Zeige, dass \geq kompatibel mit der Gruppenstruktur von Γ ist, d.h.

$$\xi \geq \eta \quad \Rightarrow \quad \xi\omega \geq \eta\omega \ \ \text{für alle} \ \ \omega \in \Gamma.$$

(Bemerkung: (Γ, \geq) heißt total geordnete Gruppe.)

(3) Setze $v(0) := \infty$, so dass $\gamma < \infty$ für jedes $\gamma \in \Gamma$. Zeige

$$v(x+y) \ge \min\{v(x), v(y)\}$$
 für alle $x, y \in K$.

Bemerkung: ein Homomorphismus v von K^{\times} in eine total geordnete Gruppe, welcher die obige Ungleichung erfüllt, heißt *Bewertung* (Engl.: *valuation*) von K.

- (4) Kann man R, R^{\times} und das maximale Ideal von R aus der Bewertung $v \colon K^{\times} \to \Gamma$ bestimmen?
- (5*) Versuche rauszufinden (recherchieren erlaubt!), was die Ungleichung bei (3) mit der Dreiecksungleichung zu tun hat.

3. Ganzheitsringe in Zahlkörpern

Sei $\mathbb{Q} \subseteq K$ eine endliche Körpererweiterung, sei \mathcal{O}_K der ganze Abschluss von \mathbb{Z} in K. Angenommen, \mathcal{O}_K ist ein endlich erzeugter \mathbb{Z} -Modul. Zeige, dass \mathcal{O}_K ein Dedekindring ist. (Tipp: zeige erst, dass \mathcal{O}_K noethersch ist. Zeige dann, dass jedes Primideal maximal ist.)

1

Bemerkung: die technische Annahme, dass \mathcal{O}_K endlich erzeugter \mathbb{Z} -Modul ist, ist immer erfüllt (vgl. zum Beispiel J. Neukirch "Algebraische Zahlentheorie", Kapitel 1, $\S 2$). Mit anderen Worten, \mathbb{Z} ist ein Japanischer Ring. Ein Integritätsbereich A heißt Japanischer Ring, falls für jede endliche Erweiterung L des Quotientenkörpers von A, der ganze Abschluss von A in L endlich erzeugt als A-Modul ist.

4. *Going-up*

Sei $f\colon R\to S$ ein ganzer Ringhomomorphismus. Zeige: der induzierte Morphismus von topologischen Räumen

$$\phi \colon \operatorname{Spec} S \to \operatorname{Spec} R$$

ist abgeschlossen, d.h. ϕ bildet abgeschlossene Teilmengen auf abgeschlossene ab.