Sheet 1

1.

- (1) $(1+r)^{-1} = \sum_{i=1}^{\infty} (-r)^i$.
- (2)
- $(a) \Rightarrow (b)$ *N* is the intersection of all prime ideals, so here equal to the only prime ideal. It is also maximal, hence the claim.
- $(b) \Rightarrow (c)$ N must be maximal, as every proper ideal is contained in $R \setminus R^{\times}$.
- $(c) \Rightarrow (a)$ *N* must be maximal. As it is contained in any prime ideal it is the only one.
- 2. Just follow the outline of the proof from the lecture, to show that the map is well-defined and bijective.

3.

(1) Induction over deg(*f*) for both implications. deg(*f*) = 0 is clear. Otherwise: $f = c_n X^n + g$ with deg(*g*) < *n*. By induction $f = g \cdot (1 - (-c_n g^{-1} X^n))$ and thus

$$f^{-1} = g^{-1} \cdot \sum_{i=0}^{\infty} (-c_n g^{-1} X^n)^i.$$

This is also the inverse of f in the ring of formal power series. The necessary condition for it to be a polynomial is c_n nilpotent (as g^{-1} and X are not).

(2) f nilpotent. Then c_0 is nilpotent and hence also

$$f - c_0 = X \cdot (c_1 + \dots + c_n X^{n-1}).$$

Inductively, all c_i are nilpotent.

For the other implication ww write again $f = c_n X^n + g$ with deg(g) < n. Inductively we have $l_n, l_g \in \mathbb{N}$ s.t. $c_n^{l_n} = 0 = g^{l_g}$. Use the binomial theorem to show

$$f^{l_n+l_g-1}=0.$$

(3) Let $g = \sum_{i=0}^{m} b_i X^i \in R[X]$ with gf = 0 and $b_m \neq 0$. Further choose g such that m is minimal. Now assume $m \ge 1$. Then set

$$l := \max\{j \in \mathbb{N} \mid c_j g \neq 0\}.$$

Now we have

$$0 = fg = (c_0 + \dots + c_n X^n)g = (c_0 + \dots + c_l X^l)g.$$

Hence $c_l b_m = 0$. This implies $0 \le \deg(c_l g) < m$. But $(c_l g)f = c_l(gf) = 0$ which contradicts the minimality of g. The other implication is trivial. 4.

- (1) Just verify the definition of a ring.
- (2) For each $x \in I$ we have the map

$$R \to \mathbb{R}, \\ f \mapsto f(x)$$

It is a surjectve ring homomorphism with kernel M_x . Hence $R/M_x \cong \mathbb{R}$ and so M_x is maximal.

(3) No. The interval *I* is of the form I = (a, b) with $a, b \in \mathbb{R} \cup \{\pm \infty\}$. Now consider the set

$$A := \{ f \in \mathbb{R} \mid \exists c \in \mathbb{R} \text{ s.t. } supp(f) = (a, c] \}.$$

Then obviously $A \not\subseteq R^{\times}$. Furthermore, $A \not\subseteq M_x$ for all $x \in I$, since for all $x \in I$ we find $x > c \in I$ and $f \in R$ with support (a, c]. Hence A must be contained in another maximal ideal.

(4) No. The 1-function has no compact support.