Sheet 2

1. (1) First equality:

$$r \in ((I:J):K) \Leftrightarrow rK \subseteq (I:J)$$

 $\Leftrightarrow rKJ \subseteq I \Leftrightarrow r \in (I:JK).$

Second equality follows from the first.

(2)

$$r \in (I:J+K) \Leftrightarrow rJ+rK \subseteq I$$

 $\Leftrightarrow rJ,rK \subseteq I \Leftrightarrow r \in (I:J) \cap (I:K).$

(3) First, $r \in \sqrt{IJ} \Rightarrow \exists n \in \mathbb{N}_+ : r^n \in IJ \subset I \cap J \Rightarrow r \in \sqrt{I \cap J}.$

Second,

$$r \in \sqrt{I \cap J} \Rightarrow \exists n \in \mathbb{N}_+ : r^n \in I \cap J \Rightarrow \exists n \in \mathbb{N}_+ : r^n \in I \wedge r^n \in J \Rightarrow r \in \sqrt{I} \cap \sqrt{J}.$$

Third,

$$r \in \sqrt{I} \cap \sqrt{J} \Rightarrow \exists n, m \in \mathbb{N}_+ : r^n \in I \wedge r^m \in J \Rightarrow r^{n+m} \in IJ.$$

(4) First,

$$r \in \sqrt{P^n} \Rightarrow \exists m \in \mathbb{N}_+ : r^m \in P^n \subseteq P \stackrel{P \text{ prime}}{\Rightarrow} r \in P.$$

Second,

$$r \in P \Rightarrow r^n \in P^n \Rightarrow r \in \sqrt{P^n}$$
.

2. Let Σ be the set of prime ideals containing I. It is partially ordered by inclusion. Let $T \subset \Sigma$ be a chain. Set

$$J:=\bigcap_{J_{\alpha}\in T}J_{\alpha}.$$

This is an ideal containing I. It is also prime: Let $x, y \in R \setminus J$. Then there exists α, β such that $x \notin J_{\alpha}, y \notin J_{\beta}$. W.l.o.g. $J_{\alpha} \subset J_{\beta}$, so $x, y \notin J_{\alpha}$. Hence $xy \notin J_{\alpha}$ since J_{α} is prime and thus $xy \notin J$.

By Zorn's Lemma a minimal prime ideal containing *I* exists.

By applying this to I = (0) we get that a minimal prime ideal in R exists.

3. (1)

(a) \Rightarrow (b) Let $U \subseteq \mathbb{R}$ be open and $x \in f^{-1}(U)$. Then there exists $\varepsilon > 0$ such that the open ball $B_{\varepsilon}(f(x))$ is fully contained in U, as it is open. By (a) we find $\delta > 0$ such that $B_{\delta}(x) \subset f^{-1}(U)$. Hence it is open.

- (b) \Rightarrow (a) Let $x \in \mathbb{R}$ and $\varepsilon > 0$. Then $B_{\varepsilon}(f(x))$ is open and by (b) its preimage $f^{-1}(B_{\varepsilon}(f(x)))$ is open, too, and contains x. Whence we find a $\delta > 0$ such that $B_{\delta}(x) \subset f^{-1}(B_{\varepsilon}(f(x)))$.
- (2) Consider the map

$$g: Spec(S) \rightarrow Spec(R), P \mapsto f^{-1}(P).$$

Let $I \subset R$ be an ideal. Then $V_R(I)$ is closed. We show that $g^{-1}(V_R(I))$ is closed in Spec(S):

$$g^{-1}(V_R(I)) = \{Q \in Spec(S) \mid g(Q) \in V_R(I)\}$$

$$= \{Q \in Spec(S) \mid I \subseteq g(Q)\}$$

$$= \{Q \in Spec(S) \mid I \subseteq f^{-1}(Q)\}$$

$$= \{Q \in Spec(S) \mid f(I) \subseteq Q\}$$

$$= V_S(f(I)).$$

- 4. (1) Set $d := \frac{|x-y|}{2}$ and $U_x := B_d(x)$, $U_y := B_d(y)$.
 - (2) As R is an integral domain, (0) is a prime ideal. For all $x,y \in Spec(R)$ we have $(0) \subset x,y$. Thus, by definition of the Zariski topology, (0) lies in no closed proper subset of Spec(R) and hence in every non-empty open subset. In particular, (0) lies in U_x and U_y . More general: In any topological space, any dense subset meets any non-empty open subset. So if a generic point exists, it lies in every non-empty open subset.
 - (3) No. Choose y = (0). Then $y \in U_x$. Compare (2).

So the conclusion is, that the Zariski topology is very coarse and the open sets are very big.