Sheet 3

- (1) First, ℝ is not irreducible, as (0,1) and (1,2) do not intersect. Second, a discrete space X is irreducible if and only if |X| = 1, since all one point sets are open. Third, a chaotic space X is irreducible because X is the only non-empty open set.
 - (2) First we observe the following. Let $I, J \subseteq R$ be radical ideals. Then

Now first assume that Nil(R) is prime. Let $V(I)^c$ and $V(J)^c$ be disjoint open sets. By the above observation, $IJ \subseteq Nil(R)$. And since Nil(R) is prime, $I \subseteq Nil(R)$ or $J \subseteq Nil(R)$. I.e. $V(I)^c = \emptyset$ or $V(J)^c = \emptyset$, so Spec(R) is irreducible.

Now assume that Nil(R) is not prime. We find $a, b \in R \setminus Nil(R)$ with $ab \in Nil(R)$. By the above observation the non-empty open sets D(a) and D(b) are disjoint. Thus Spec(R) is not irreducible.

- 2. Since $f_3(i,0) = 0$ we can set $M = (x i, y) \subset \mathbb{C}[x, y]$. Now observe that both $\mathbb{R}[x, y]$ and $\mathbb{C}[x, y]$ are \mathbb{R} -algebras and $\mathbb{C}[x, y] = \mathbb{R}[i, x, y]$ is finitely generated. Hence, the preimage $(x^2 + 1, y)$ of M under the inclusion $\mathbb{R}[x, y] \hookrightarrow \mathbb{C}[x, y]$ is maximal in $\mathbb{R}[x, y]$. Choose $P = (x^2 + 1, y)$.
- 3. (1) First, $A = k[X]/(X^2)$ is not integral and no field. Second, A = k[X] is integral, but not algebraic over *k* and no field.
 - (2) K = k(X) is contained in the integral domain R = k(X) = K, which is not a finitely generated *k*-algebra. And *K* is not algebraic over *k*.
- 4. (1) $R = k[[t]], Quot(R) = k((t)) = k((t))[t^{-1}]$
 - (2) $R = \mathbb{Z}$, $Quot(R) = \mathbb{Q}$
 - (3) $R = \mathbb{Z}/6\mathbb{Z}$, Spec $(R) = \{(2), (3)\}$
 - (4) R = k[x,y]/(xy). Then Spec(*R*) is connected, but has two irreducible components V(x), $V(y) \neq \emptyset$ intersecting in the point with coordinates x = 0, y = 0 and $V(x) \cup V(y) = \text{Spec}(R)$.