
Sheet 5

1. (1) Consider the sequences

M′
f→ M

g→ M′′ → 0 (?)

and
0→ HomR(M′′, N)

g∗→ HomR(M, N)
f∗→ HomR(M′, N). (??)

Now assume that (?) is exact.
Let ϕ ∈ ker(g∗), i.e. ϕ ◦ g = 0. As g is surjective, we get ϕ = 0. So g∗ is
injective.
Let ϕ ∈ HomR(M′′, N). Then ( f∗(g∗(ϕ)) = ϕ ◦ g ◦ f = 0, since im( f ) =
ker(g). So we get im(g∗) ⊆ ker( f∗).
Let ϕ ∈ ker( f∗), i.e. ϕ ◦ f = 0. This means ker(g) = im( f ) ⊆ ker(ϕ). As
g is surjective we have M′′ ∼= M/ker(g). Thus we can define ψ : M′′ ∼=
M/ker(g)→ N by ψ(m + ker(g)) := ϕ(m). This is well-defined because of
ker(g) ⊆ ker(ϕ). We clearly have ϕ = ψ ◦ g, so ker( f∗) ⊆ im(g∗).

Now assume that (??) is exact.
Let ϕ1, ϕ2 ∈ HomR(M′′, N) for any choice of N. Then the injectivity of g∗
says

ϕ1 ◦ g = ϕ2 ◦ g⇒ ϕ1 = ϕ2.

But this just means that g is right-cancellative, hence surjective.
Choose N = M′′ and id ∈ HomR(M′′, M′′). As ker( f∗) = im(g∗) we de-
duce 0 = f∗(g∗(id)) = g ◦ f , thus im( f ) ⊆ ker(g).
Choose N = M/im( f ) and π ∈ HomR(M, M/im( f )) the canonical pro-
jection. Then π ◦ f = 0, so π ∈ ker( f∗) = im(g∗) So we find ϕ ∈
HomR(M′′, M/im( f )) with π = ϕ ◦ g. Now let m ∈ ker(g). We get
0 = ϕ(0) = ϕ(g(m)) = π(m). So m ∈ ker(π) = im( f ).

(2) In general, when M′ ⊆ M, the induced map HomR(M, N)→ HomR(M′, N)
is just the restriction ϕ 7→ ϕ|M′ .
Choose R = M = N = Z and M′ = 2Z. Then HomZ(Z, Z)→ HomZ(2Z, Z)
is not surjective, since the Z-linear map

2Z→ Z, 2 7→ 1

is not induced by a Z-linear map Z→ Z.

2. To prove (1) and (2), we show the following general result:
Let R be a ring and I, J ⊆ R be ideals. Then R/I ⊗R R/J ∼= /(I + J).
Proof: We have the bilinear map

R/I × R/J → R/(I + J), (r, s) 7→ rs.
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(Check that it is well-defined!)
The universal property of the tensor product gives an R-linear map

φ : R/I ⊗R R/J → R/(I + J), r⊗ s 7→ rs.

Now we make the following observation. Let ∑ ri ⊗ si ∈ R/I ⊗R R/J be arbi-
trary. Then

∑ ri ⊗ si = ∑ ri · (1⊗ si)

= ∑(risi · (1⊗ 1))

=
(
∑ risi

)
· (1⊗ 1)

So every element of R/I ⊗R R/J is of the form r · (1⊗ 1) for some r ∈ R. Thus
the above map is given by φ(r · (1⊗ 1)) = r. It is obviously surjective. To see
that is is injective, too, use that for all i ∈ I, j ∈ J we have

(i + j) · (1⊗ 1) = i · (1⊗ 1) + j · (1⊗ 1) = i⊗ 1 + 1⊗ j = 0⊗ 1 + 1⊗ 0 = 0.

Alternatively, we can aplly exercise 3. and get

R/I ⊗R R/J 3.
= (R/I)/(J(R/I))
= (R/I)/(J/(I ∩ J))
= (R/I)/(I + J/I)
= R/(I + J).

(2) Applying the above result we get (Z/mZ)⊗Z (Z/nZ) ∼= Z/gcd(m, n)Z.

(1) Follows from (2).

(3) We had this in the lecture for free modules of rank m and n over arbitrary
rings R. Aplly for R = k.

3. We have the exact sequence

0→ I → R→ R/I → 0.

Tensoring with M yields the exact sequence

I ⊗R M→ M→ R/I ⊗R M→ 0.

We have I ⊗R M ∼= IM and R/I ⊗R M ∼= M/ker(M → R/I ⊗R M). Further
more ker(M→ R/I ⊗R M) = im(I ⊗R M→ M) = IM.

Alternatively, we can consider the bilinear map

R/I ×M→ M/IM, (r, m) 7→ rm.
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We get an R-linear map

φ : R/I ⊗R M→ M/IM, r⊗m 7→ rm.

Now let ∑ ri ⊗mi ∈ R/I ⊗R M be arbitrary. Then

∑ ri ⊗mi = ∑ ri(1⊗mi)

= ∑(1⊗ (rimi))

= 1⊗
(
∑ rimi

)
.

Thus every element of R/I⊗R M is of the form 1⊗m for some m ∈ M. Now we
can again easily show that φ is bijective.

4. Just follow the hint. To show the implictation

M⊗R N = 0⇒ Mk ⊗k Nk = 0

it is helpful to use the following cancellation law:
Let R be a ring, M an R-module, A an R-algebra and N an A-module. Then

(M⊗R A)⊗A N ∼= M⊗R N,

as A-modules.
Proof: Consider the (A-)bilinear map

(M⊗R A)× N → M⊗R N, ((m⊗ a), n) 7→ m⊗ (an).

It induces the A-linear map

φ : (M⊗R A)⊗A N → M⊗R N, (m⊗ a)⊗ n 7→ m⊗ (an).

Next consider the (R-)bilinear map

M× N → (M⊗R A)⊗A N, (m, n) 7→ (m⊗ 1)⊗ n.

It induces the R-linear map

ψ : M⊗R N → (M⊗R A)⊗A N, m⊗ n 7→ (m⊗ 1)⊗ n.

ψ is obviously A-linear. Now it is easy to see that φ and ψ are inverse to each
other.
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