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1. (1) Consider the sequences

ML MM S0 %)
and
0 — Homg(M”, N) £ Homg(M, N) i Hompg (M, N). (k)

Now assume that (x) is exact.

Let ¢ € ker(g4), i.e. pog = 0. As g is surjective, we get ¢ = 0. So g is
injective.

Let ¢ € Homg(M"”,N). Then (f.(g«(¢)) = ¢ogo f =0, since im(f) =
ker(g). So we get im(g«) C ker(f).

Let ¢ € ker(fs), i.e. ¢ o f = 0. This means ker(g) = im(f) C ker(¢p). As
¢ is surjective we have M" = M/ker(g). Thus we can define ¢ : M" =
M/ker(g) — N by ¢(m + ker(g)) := ¢(m). This is well-defined because of
ker(g) C ker(¢p). We clearly have ¢ = o g, so ker(f,) C im(g«).

Now assume that (%x) is exact.
Let 1, 92 € Homg(M",N) for any choice of N. Then the injectivity of g.
says
P18 =208 = @1 = ¢2.

But this just means that g is right-cancellative, hence surjective.
Choose N = M” and id € Homgr(M"”, M"). As ker(f.) = im(g.) we de-
duce 0 = f.(g«(id)) = g o f, thus im(f) C ker(g).
Choose N = M/im(f) and m € Homg(M, M/im(f)) the canonical pro-
jection. Then mof = 0, so m € ker(fs) = im(g«) So we find ¢ €
Homg(M", M/im(f)) with 7 = @og. Now let m € ker(g). We get
0= ¢(0) = ¢(g(m)) = (m). So m € ker(rr) = im(f).

(2) In general, when M’ C M, the induced map Homg (M, N) — Homg(M’,N)
is just the restriction ¢ — |-
Choose R=M = N = Z and M' = 2Z. ThenHomy(Z,Z)) — Homy(2Z,Z)
is not surjective, since the Z-linear map

27 — 7, 21
is not induced by a Z-linear map Z — Z.

2. To prove (1) and (2), we show the following general result:
Let R be aring and I,] C R be ideals. Then R/I ®r R/] = /(I +]).
Proof: We have the bilinear map

R/IXR/] = R/(I+]), (75 —T7s.



(Check that it is well-defined!)
The universal property of the tensor product gives an R-linear map

¢:R/IQRR/] = R/(I+]), F®s5+T7s.

Now we make the following observation. Let } 7; ®5; € R/I ®g R/] be arbi-
trary. Then

So every element of R/I ®g R/] is of the form r- (1®1) for some r € R. Thus
the above map is given by ¢(r- (1® 1)) = 7. It is obviously surjective. To see
that is is injective, too, use that for alli € I,j € | we have

i+))- o) =i- 1) +j - I101)=iel+10j=001+120 =0.

Alternatively, we can aplly exercise 3. and get

3

R/I®rR/] = (R/I)/(J(R/T))
/(

(
= (R/D)/(J/(IN]))
= (R/D)/(I+]/1I)
= R/(I+))

(2) Applying the above result we get (Z/mZ) @z (Z/nZ) = Z/gcd(m, n)Z.
(1) Follows from (2).

(3) We had this in the lecture for free modules of rank m and n over arbitrary
rings R. Aplly for R = k.

. We have the exact sequence
0—+I—-R—R/I—0.
Tensoring with M yields the exact sequence

IQg M —- M — R/I®r M — 0.

We have I ®@g M = IM and R/I ®gr M = M/ker(M — R/I®g M). Further
more ker(M — R/I®@r M) =im(I ®r M — M) = IM.

Alternatively, we can consider the bilinear map

R/IXM— M/IM,  (F,m) — 7.



We get an R-linear map

¢:R/IQgM — M/IM,  F®m s 7.

Now let ) 7; ® m; € R/I ®r M be arbitrary. Then

Y fiom; =) ri(lom)
= _Z(T@) (rim;))
=1® (Zrim,-) .

Thus every element of R/ @g M is of the form 1® m for some m € M. Now we
can again easily show that ¢ is bijective.

4. Just follow the hint. To show the implictation

MRRN=0= M; N, =0

it is helpful to use the following cancellation law:
Let R be a ring, M an R-module, A an R-algebra and N an A-module. Then

(M®g A) ®4 N = M®gN,

as A-modules.
Proof: Consider the (A-)bilinear map

(M®rA) x N— M®gN, (m®a),n) — m®x (an).
It induces the A-linear map
¢p: (MRRA)®aN—= M®gN, (m®a)@n— m (an).
Next consider the (R-)bilinear map
MXN— (M®rA)®4N, (m,n)— (mx1)Qn.
It induces the R-linear map
P:MRIrN = (M®rA)®@4N, mn— (mMe1)n.

Y is obviously A-linear. Now it is easy to see that ¢ and ¢ are inverse to each
other.



