Sheet 8

- 1. $S^{-1}R \cong k[x, x^{-1}]$ (note that $\frac{y}{1} = \frac{0}{1}$ in the localization, as xy = 0 in *R*). Further, $k[t]/t^2$ is a local ring, hence its localization at the (unique) prime ideal is still isomorphic to $k[t]/t^2$.
- 2. Ideals in R/I correspond to ideals in R containing I. This is in particular true for maximal ideals. So for a maximal ideal $I \subset \mathfrak{m} \subset R$ let \mathfrak{m} be its counterpart in R/I. Furthermore M/IM is an R/I-module. We know that M/IM = 0 if and only if $(M/IM)_{\mathfrak{m}} = 0$ for all maximal ideals $I \subset \mathfrak{m} \subset R$. This is equivalent to $M_{\mathfrak{m}}/(IM)_{\mathfrak{m}} = 0$ for all maximal ideals $I \subset \mathfrak{m} \subset R$. But this now holds by assumption.
- 3. x = 0 in R_p means that there is an $s \in R \setminus p$ such that sx = 0 in R. As $0 \in p$, $s \notin p$ and p prime, we deduce $x \in p$. Thus x lies in the intersection of all prime ideals of R, i.e., x = 0 as R reduced.
- 4. (1): ' \Leftarrow ' is immediate. Conversly, assume $M_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R)$. Applying Exercise 2 above to I = (0), we deduce $M = (0)\dot{M} = 0$. This shows ' \Rightarrow '.

(2): If *M* is generated by one element *m*, one checks that $M \cong R/\operatorname{Ann}(m)$, where $\operatorname{Ann}(m) = \{r \in R : rm = 0\}$, and hence $\operatorname{Supp}(M) = V(\operatorname{Ann}(m))$. Let m_1, \ldots, m_r be a set of generators of *M*. We have

$$\operatorname{Supp}(M) = \bigcup_{i} \operatorname{Supp}(Rm_i) = \bigcup_{i} V(\operatorname{Ann}(m_i)) = V(\bigcap_{i} \operatorname{Ann}(m_i)).$$

As m_i generate M, we see that $r \in R$ lies in Ann(M) if and only if $rm_i = 0$, i.e., if $r \in \bigcap_i Ann(m_i)$.

(3): this is clear from (2).