Sheet 9

- 1. R = R[x]/(x). So if R[x] is notherian, the same holds for R.
- 2. (1) We have that $\ker(f) \subseteq \ker(f^2) \subseteq ...$ This terminates, so there exists $n \in \mathbb{N}$ with $\ker(f^n) = \ker(f^{n+1})$. Now let $x \in \ker(f)$. As f is surjective, we find $y \in M$ with $f^n(y) = x$. But then $f^{n+1}(y) = f(f^n(y)) = f(x) = 0$. Thus $y \in \ker(f^{n+1}) = \ker(f^n)$. But then $x = f^n(y) = 0$. So f is injective.
 - (2) We have that $\operatorname{im}(f) \supseteq \operatorname{im}(f^2) \supseteq \dots$ This terminates, so there exists $n \in \mathbb{N}$ with $\operatorname{im}(f^n) = \operatorname{im}(f^{n+1})$. So for every $x \in M$ we have $f^n(x) \in \operatorname{im}(f^n)$ and we find $y \in M$ with $f^n(x) = f^{n+1}(y) = f^n(f(y))$. Since f is injective we deduce x = f(y).
- 3. Let $m_1, ..., m_n$ be a set of generators for *M*. Consider the map

$$f: R \to M^n, r \mapsto (rm_1, ..., rm_n).$$

Its kernel is precisely *I*. So R/I is ismorphic to a submodule of M^n . As *M* is noetherian, M^n is noetherian, too. So R/I is noetherian as an *R*-module. But this is equivaent to R/I being noetherian as a ring.

Replacing "noetherian" by "artinian" gives a false statement. Consider $R = \mathbb{Z}$, p a prime number and $M = \mathbb{Z}\left[\frac{1}{p}\right]/\mathbb{Z}$. Then M can be seen as the set of all fractions between 0 and 1 and with powers of p as denominators.

Claim: Every proper \mathbb{Z} -submodule (i.e. every subgroup) of M is generated by $\frac{1}{v^k}$ for an appropriate $k \in \mathbb{N}$.

Proof: Let $k \in \mathbb{N}$ and $a \in \mathbb{Z}$ with $0 \le a \le p^k$ and (a, p) = 1. Then—with the euclidean algorithm—we find $b \in \mathbb{Z}$ with $ab \equiv 1 \mod p^k$. This means that $b \cdot \frac{a}{p^k} = \frac{1}{p^k}$ in M.

Multiplying any $\frac{a}{p^k}$ by elements in \mathbb{Z} makes the denominator at worst smaller (cancelling down). So every proper subgroup is generated by its element $\frac{1}{p^k}$ with *k* maximal.

So every decreasing chain of submodules if of the form

$$\left\langle \frac{1}{p^{k_1}} \right\rangle \supseteq \left\langle \frac{1}{p^{k_2}} \right\rangle \supseteq \dots$$

with $k_1 \ge k_2 \ge ... \ge 0$. And this surely terminates.

4. (1) Let $A \subset X$. Then every open set of A is of the form $A \cap U$ with $U \subset X$ open. Assume that A is not noetherian, so we find a strictly increasing chain

$$A \cap U_1 \subsetneq A \cap U_2 \subsetneq \dots$$

of open sets in A. But this gives a strictly increasing chain

$$U_1 \subsetneq U_1 \cup U_2 \subsetneq \dots$$

of open sets in *X*.

- (2) Let U be an open covering of X. Let Σ be the set of finite unions of elements of U. As X is noetherian, Σ has a maximal element U₁ ∪ ... ∪ U_n. By its maximality it must be the whole space X.
- (3) Let \mathcal{U} be an open covering of Spec(R), w.l.o.g. consisting of principal open sets. I.e. $\mathcal{U} = \{D(f_i) \mid f_i \in R, i \in I\}$ for an index set I. The condition

$$\bigcup_{i\in I} D(f_i) = \operatorname{Spec}(R)$$

is equivalent to

 $(f_i \mid i \in I) = R.$

So we find a **finite** subset $H \subset I$ such that

$$(f_i \mid i \in H) = R$$

and

$$\bigcup_{i\in H} D(f_i) = \operatorname{Spec}(R).$$

(4) Ascending chains of open sets Spec(R) \V(J_i) in Spec(R) give descending chains of closed sets V(J_i) in Spec(R). And these give acending chains of ideals J_i in R. The last terminate, so do the first.