Sheet 11

- 1. Let $s \in S'$. Then we find a monic $p \in f(S)[X]$ with p(s) = 0. Clearly, we can lift p to a monic polynomial in $(f(S) \otimes_R T)[X]$, also denoted by p, such that $p(s \otimes 1) = 0$. So all elements of the form $s \otimes 1 \in S' \otimes_R T$ are integral over $f(S) \otimes_R T$. Moreover, $1 \otimes t \in f(S) \otimes_R T \subset S' \otimes_R T$ is integral over $f(S) \otimes_R T$ for all $t \in T$. So all simple tensors are integral, therefore the whole ring.
- 2. (1) The realation is well-definied, as $x \in R$ if and only if $xr \in R$ for all $r \in R \times$. For all $x \in K^{\times}$ we have $v(x) \ge v(x)$ since $xx^{-1} \in R$.

If $v(x) \ge v(y)$ and $v(y) \ge v(x)$, we have $xy^{-1} \in R$ and $yx^{-1} \in R$. So $xy^{-1} \in R^{\times}$, i.e. v(x) = v(y),

If $v(x) \ge v(y)$ and $v(y) \ge v(z)$, we have $xy^{-1} \in R$ and $yz^{-1} \in R$. So $xz^{-1} = xy^{-1}yz^{-1} \in R$ and thus $v(x) \ge v(z)$.

As *R* is a valuation ring, we have $xy^{-1} \in R$ or $yx^{-1} \in R$ for all $x, y \in K^{\times}$. So $v(x) \ge v(y)$ or $v(y) \ge v(x)$.

- (2) Let $v(x) \ge v(y)$, so $xy^{-1} \in R$. But then we have for all $z \in K^{\times}$ that $xzz^{-1}y^{-1} \in R$, so $v(x)v(z) \ge v(y)v(z)$.
- (3) If $v(x) \ge v(y) xy^{-1} \in R$, we have $(x+y)y^{-1} = xy^{-1} + 1 \in R$, so $v(x+y) \ge v(y)$.

If $v(y) \ge v(x) \ yx^{-1} \in R$, we have $(x+y)x^{-1} = 1 + yx^{-1} \in R$, so $v(x+y) \ge v(x)$.

(4) First,

$$R^{\times} = \{ x \in K^{\times} \mid v(x) = v(1) \}.$$

Second,

$$R = \{ x \in K^{\times} \mid v(x) \ge v(1) \}.$$

Third,

$$\mathfrak{m} = R \setminus R^{\times} = \{ x \in K^{\times} \mid v(x) > v(1) \}.$$

3.

- \mathcal{O}_K is normal, as it is integrally closed in a field.
- \mathcal{O}_K is noetherian, as it is finitely generated over \mathbb{Z} which is noetherian.
- Let $\mathfrak{p} \subset \mathcal{O}_K$ be a prime ideal. Then $\mathfrak{p} \cap \mathbb{Z} = (p)$ is prime in \mathbb{Z} . If p is prime, then (p) is maximal and so is \mathfrak{p} , since both \mathbb{Z} and \mathcal{O}_K are integral domains. So we have to show: $\mathfrak{p} \neq (0)$, then $p \neq 0$.

Let $x \in \mathfrak{p} \setminus \{0\}$. Then there is an integral equation over \mathbb{Z}

$$x^{n} + r_{n-1}x^{n-1} + \dots + r_{1}x + r_{0} = 0$$

with w.l.o.g. $r_0 \neq 0$ (otherwise cancel *x* on both sides). The first n - 1 summands on the left hand side are in p and the right hand side is also in p. So $r_0 \in p$ and, of course, $r_0 \in \mathbb{Z}$. So $0 \neq r_0 \in (p)$, i.e. $p \neq 0$.

- To see that \mathcal{O}_K is indeed a finitely generated \mathbb{Z} -module we refer to any book about algebraic number theory, for example the standard book by Jürgen Neukirch.
- 4. A closed subset of Spec(*S*) is of the form $V(I) \cong \text{Spec}(S/I)$ for some ideal *I* of *S*. It is enough to show that $\phi(V(I)) = V(f^{-1}(I))$. As $V(f^{-1}(I)) \cong \text{Spec}(R/f^{-1}(I))$, it is enough to show that the map

$$\bar{\phi}$$
: Spec $(S/I) \rightarrow$ Spec $(R/f^{-1}(I))$

induced by \overline{f} : $R/f^{-1}(I) \hookrightarrow S/I$ is surjective. As *S* is intergal over *R*, also *S*/*I* is integral over $R/f^{-1}(I)$. Hence (by a part of the going-up theorem), it follows that $\overline{\phi}$ is surjective.