Sheet 12

- 1. (1.) Obviously, $0 \in H$, so H is non-empty. Let U be any open neighbourhood of 0. Then -U is one, too, so -H = H. Let $x, y \in U$. Then U y is open and contains y. So $x \in U y$, i.e. $x + y \in U$.
 - (2.) Obviously, $K \subset \overline{K}$, so \overline{K} is non-empty. Let U be any closed set containing K. Then -U is closed and contains -K = K. So $-\overline{K} = \overline{K}$. Now first, let $x \in K$. Then $K = x + K \subset x + \overline{K}$. Since $x + \overline{K}$ is closed we have $\overline{K} \subset x + \overline{K}$ and $-x + \overline{K} \subset \overline{K}$, whence $K + \overline{K} \subset \overline{K}$. Now second, let $x \in \overline{K}$. Then $K + x \subset \overline{K}$ by the above computations. This implies $\overline{K} + x = \overline{K + x} \subseteq \overline{K}$. We deduce $\overline{K} + \overline{K} \subset \overline{K}$.
- 2. (1.) Let μ, ι denote the addition and inversion maps. Let $x \in \mathbb{Z}$ and $n \in \mathbb{N}$ be arbitrary. First,

$$\iota^{-1}(U_n(x)) = U_n(-x).$$

Second,

$$\mu^{-1}(U_n(x)) = \bigcup_{y \in \mathbb{Z}} (U_n(y) \times U_n(x-y)).$$

Both right hand sides are open.

- (2.) (a_k)_{k∈ℕ} is Cauchy if and only if for all open neighbourhoods U_N(0) of zero there exists an n₀ ∈ ℕ, such that for all k, k' ≥ n₀ we have a_k a_{k'} ∈ U_N(0) = p^Nℤ. I.e. p^N | a_k a_{k'}.
- (3.) First, using k' = k + 1 in part (2.), we see that the sequence $(a_k)_{k \in \mathbb{N}}$ is Cauchy if and only if for all $N \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ such that for all $k \ge n_0$ we have $p^N | c_k$. This we can reformulate to $v_p(c_k) \to \infty$ in \mathbb{N} (with ordinary metric topology) or to $c_k \to 0$ in \mathbb{Z} with *p*-adic topology.

Second, using the result for $(a_k)_{k \in \mathbb{N}}$, we see that $(a'_k)_{k \in \mathbb{N}}$ is always Cauchy. I.e. in the *p*-adic completion \mathbb{Z}_p all power series in *p* converge.