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Abstract

In a previous paper we showed that, for ang> m + 2, most sets of. points inR™ are determined
(up to rotations, reflections, translations and relabeling of the points) by the distribution of their pairwise
distances. But there are some exceptional point configurations which are not reconstructible from the
distribution of distances in the above sense. In this paper, we present a reconstructibility test with running
time O(n''). The cases of orientation preserving rigid motions (rotations and translations) and scalings
are also discussed.

Introduction

In this paper, we present a quick an easy (but slightly imperfect) solution to the problem of characterizing
the shape of sets of points in Euclidean space, so-callegboint configurations, for any positive integer

More precisely, am-point configuratioris a collection of: points inR™. Point configurations often arise in
biological and medical imagery, as well as in the fields of archaeology, astronomy and cartography, to name
just a few. For example, stellar constellations, minutiae of fingerprints, and distinguished points (landmarks)
on medical images represent point configurations.

An important problem of computer vision is that of recognizing point configurations. In other words,
the problem is to determine whether two point configurations have the same shape, that is to say, whether
there exists a rotation and a translation (sometimes a reflection and/or a scaling are allowed as well) which
maps the first point configuration onto the second. Let us first concentrate on the case of rigid motions,
i.e. rotations, translations and reflection&ift. Note that any rigid motion can be written @/, T'), where
M is an orthogonatn-by-m matrix andT” is anm-dimensional (column) vector.

One of the biggest difficulties in trying to identify point configurations up to rigid motions is the absence
of labels for the points: one does not know, a priori, which point is going to be mapped to which. If the points
were already labeled in correspondence, then, following the so-called Procrustes approach ({3ooves |
could analytically determine a rigid motion which maps the first string as close as possible [ihshase,
for example) to the second. The statistical analysis of such methods is presented in CGijodaibfher
way to proceed would be to compare the pairwise (labeled) distances between the points of each point
configurations (Blumentha?]). Indeed, the following well known fact holds. See, for example, Boutin and
Kemper ] for a simple proof.

Proposition 0.1. Letps,...,p, andq, . .., g, be points inR™. If |p; — p;|| = ||¢; — g;|| for everyi, j =
1,...,n, then there exists a rigid motidi/, T') such thatMp, + T = q;, foreveryi = 1,...,n.

A variety of methods have been developed for labeling the points ofitwoint configuration in corre-
spondence. See, for example, Hartley and Zisseriiipfof a description of some of these methods. But
labeling the points is a complex task which we would much rather do without. Invariant theory suggests a
possible approach for recognizing unlabeled points. The idea consists in comparing certain functions of the
pairwise distances between the points of the configuration which have the property that they are unchanged
by a relabeling of the points. These are often cafjeabh invariantsand have been computed in the case of
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Value # of Occurrences
1 4

V2 2

Table 1: Distribution of distances of a unit square.

n = 4 by Aslaksen et al.]], andn = 5 by the second authob] page 220]. Unfortunately, the case= 6

or larger still stands as a computational challenge. Moreover, the invariants used are polynomial functions of
the distances whose number and degrees increase dramaticalty. Witiey are thus very sensitive to round

off errors and noise.

In the following, we study an alternative approach based on the use of a very simple object: the distri-
bution of the pairwise distances. The distribution of the pairwise distancesropaint configuration is an
array which lists all the different values of the pairwise distances between the points in increasing order and
the number of times each value occurs. For example, the distribution of distances of four points situated at
the corners of a unit square is given in Table 1.

Obviously, such a distribution remains unchanged under any rigid motion of the point configuration as
well as any relabeling of the points. Far= 1,2 or 3, it is easy to see that the distribution of distances
completely characterize the-point configuration up to a rigid motion. Far > m + 2, we proved that,
most of the timethis distributioncompletelycharacterizes the shape of the point configuration (see [
Theorem 2.6]).

To simplify our discussion, we introduce the concept of reconstructibility from distances.

Definition 0.2. We say that thex-point configuration represented by, ..., p, € R™ is reconstructible

from distancesdf, for everyq, ..., ¢, € R™ having the same distribution of distances, there exists a rigid
motion (M, T) and a permutationr of the labels{1,...,n} such thatMp; + T = q,(;, for everyi =
1 n.

geeey

In the following, we shall often identify a point configuration and one of its representation. , p,, €
R™. This is done for simplicity and we hope it will not create any confusion. Please note that the question
of reconstructing the point configuration from its distribution of distancesnwsiibe addressed in this paper.
We suspect this is quite a challenging problem. In fact, our guess is that this problem lies in the complexity
class NP; it might even be NP-complete.

Theorem 2.6 of Boutin and Kempef][actually implies that there exists an open and dense stibset
(R™)™ of reconstructible point configurations. In Sectibnve concentrate on the planar case= 2 and
give an algorithm irO(n!!) steps to determine whether a point liein(A simple Matlab implementation
of this algorithm is given in the appendix.) A generalization to other dimensiens also mentioned.
Section 3 describes how an additional distribution can be used in the planar case in order to compare the
orientation of two point configurations. In Section 4, we show that a slightly modified distribution can be
used to completely characterize most point configurations up to rigid motions and scalings.

1 Reconstructible configurations

Denote byP the set of pairs

P={{i,j}ti#744,j=1,...,n}
Consider the group of permutatioS%g) of the elements oP. For anyp € S(g) and any{i,j} € P, we
denote byy - {i, 7} the image of(4, j} underp. For two point configurations to have the same distribution
of distances means that there exists a permutatian S ., which maps the labeled pairwise distances of
the first configuration onto the labeled pairwise distances of the second configuration. More precisely, if
p1,-..,pn € R™andgq,...,q, € R™ have the same distribution of distances,dgt = ||p; — p;|* and
d; ; = lla; — ¢;||?, for all {1, j} € P. Then there existp € S(g) such that

dy-fijy = d{[i,j}a forall {i,j} € P.
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For close enough point configurations, we have proved]ithiat one does not need to keep track of the
labeling of the points. The proof is very short and we reproduce it here for completeness.

Proposition 1.1. For anyn-point configuratiorps, . . ., p, € R™, there exists a neighborhodd of

(p1s--.,pn) € (R™)™ such that if(¢1, ..., ¢,) € U is ann-point configuration with the same distribution
of distances as that dp1, . . ., p,, ), then the two point configurations are the same up to a rigid motion and
a relabeling of the points.

Proof. Let us assume the contrary. Then there exists a sequemepaint configurationgq?, . . . LRI,
converging ta;, . .., pn, and a sequence of permutatids, } 3, C S(g) such that none of thef', . . ., ¢*
can be mapped tpy,...,p, by a rotation and a translation and a relabeling, but the distaficgs =
|pi — p;|* are mapped to the distancéf ;, = ll¢f — ¢} [|> by g5, S0d,,, (i 5y = df, ;, forall {i, j} € P.
By taking a subsequence, we may assumehat ¢ is the same for every sinceS(g) is a finite group.
Taking the limit, we obtain thad,.(; ;3 = limg .o d’{z_’j}, for {,j} € P. By continuity of the distance,
this implies thatd,,.(; ;3 = dy; ;3. forall {i,j} € P. Thereforedy; ;; = d’{%’j} for every{i,j} € P. By
Proposition0.1, this implies thai?f, ..., ¢* andp,...,p, are the same up to a rigid motion, for evéry
which contradicts our hypothesis, and the conclusion follows. O

Unfortunately, the size of the neighborhood is unknown and varies with the paints. , p,,, so this
local result is not very practical. We now consider the global case. Observe that some of the permutations in
S(g) correspond to a relabeling of the points. More precisglgprresponds to a relabeling of the points if
there exists a permutation: {1,...,n} — {1,...,n} of the indices such that- {7, j} = {n(¢),w(5)}, for
every{i,j} € P. Relabelings are thgood permutations: if the permutation mapping the labeled pairwise
distances of a point configuration onto the labeled pairwise distances of another configuration is a relabeling,
then the two configurations are the same up to a rigid motion. We need to know what distinguishes the good
permutations from the bad permutations. The following lemma, which is central to our argument, says that,
informally speaking, a permutation is a relabeling if it preserves adjacency.

Lemma 1.2. Suppose: # 4. A permutationp € S(g) is a relabeling if and only if for all pairwise distinct
indicesi, 7,k € {1,...,n} we have

o-{i, 5y Ne-{i,k} #0. (1.1)

Proof. Forn < 3, everyp € S ") is a relabeling, and the conditiof.() is always satisfied. Thus we may

assumer > 5. Itis also clear thzat every relabeling satisfigsl).

Suppose thap € S(g) is a permutation of? which satisfies 1.1). Take anyi,j, k,l € {1,...,n}
pairwise distinct and assume, by way of contradiction, thafi, j} N ¢ - {i,k} N - {i,1} = 0. Then the
injectivity of ¢ and the conditionX(.1) imply that we can writep - {i, j} = {a, b}, ¢ - {i,k} = {a,c}, and
o - {i, 1} = {b,c} with a,b,c € {1,...,n} pairwise distinct. Now chooser € {1,...,n}\ {i,7,k,1}.
Theny - {i,m} must meet each of the sefs, b}, {a,c}, and{b, c}. Being itself a set of two elements,
¢ - {i,m} must be one of the sefs:, b}, {a,c}, or {b, c}, contradicting the injectivity ofp. Therefore
e {i,j}ne-{i ke {i, 1} #0.

Fixanindexi € {1,...,n} and choosg, k € {1,...,n} \ {i}. Theny - {i,j} N {3, k} is a set with
one element, and by the above this one element must also lie in gvefiy 1} with i € {1,...,n} \ {¢}.
Hence,,; ¢ - {i, [} # 0. This allows us to define amap {1,...,n} — {1,...,n} with

(V- {i} = {o()} (1.2)
i
Fori € {1,...,n} defineM; := {{i,j} | j € {1,...,n} \ {i}}. Then (.2 tells us thatp - M; C M.

Since|M;| = |M,;| and sincep is injective, this impliesp - M; = M, ;. Takei,7 € {1,...,n} with
o(i) = o(i'). Theny - M; = ¢ - M/, which impliesM; = M, and thereforé = i’. Thuse is injective.



4 Mireille Boutin and Gregor Kemper

Equation {.2) implies that fori, j € {1,...,n} distinct we can writep - {i,j} = {o(4),7:(5)} with
vii {1,...,n}\ {i} — {1,...,n}. Butapplying (.2) with the roles ofi and; interchanged yields

{o()} = (e {i.i} = (o), ()}
= =
By the injectivity of o this implieso(j) = 7;(j) for all i # j. We conclude thap - {i,j} = {c(i),0(j)}
foralli,j € {1,...,n} distinct. But this means that is a relabeling, as claimed O

Remark. Forn = 4, Lemmal.2becomes false. An example is givenpy S(4) defined as

50{172}:{1a2}a 90{173}:{173}7 50{174}:{2a3}
@'{273}:{174}7 90'{274}:{274}7 90'{374}:{374}'

This permutation satisfied (1), but it is not a relabeling. Lemmh2becomes true for = 4 if we add the
additional condition

- {1,2}ne-{1,3}Np-{1,4} #0. (1.3)
q

Do non-reconstructible point configurations exist? The answer is yes. Some examples can be found
in Boutin and Kemper4]. Fortunately, non-reconstructible configurations are rare. The key to this fact
is contained in the functional relationships between the pairwise distances of a point configuration. These
relationships are well-known from classical invariant theory. For example, a planar configuration of four
pointsp;, p;, pr, andp, satisfies

—2dy; 1 dyigy —dggy —dggay - digry — dgigy — dey
det | dgijy —dgigy —dyjn —2dg;1 dijry —djay —dgegy | =0.
diiky = day — dgeay  dggey — djay — ey —2d k1

We can also express this relationship as follows. Define the polynomial

gU VW, X,Y,Z):=2U%Z +2UVX —2UVY —2UVZ —2UXW —2UXZ 4+ 2UY W —
WYZ —2UWZ+2UZ%+2V2Y —2VXY —2VXW +2VY2 —2VY W —
WY Z+2VWZ +2X°W —2XYW +2XYZ +2XW?2 —2XWZ.

Then
9 (dgigy diiwy- dys dgry- Ay diey ) = 0. (1.4)
For simplicity, we continue to concentrate on the planar ease 2 although other dimensions can be

treated similarly. Recall tha®? denotes the set of pai® = {{i,j}|i # j,4,5 = 1,...,n}. The following
theorem gives a practical test for reconstructibility of planar point configurations.

Theorem 1.3. Letn > 5, letp,,...,p, € R?and letd; ;, = |lpi —p;||* be the square of the Euclidean dis-
tance betweep; andp;, for every{i, j} € P. Suppose that for each choice of indi¢gg: ,i2,j1.,j2.k1,k2,1,
lo,m1,meo € {]., Ce 77’L} such that the pairéti(),il}, {i(),iQ}, {jl,jg}, {kl, kg}, {ll, lz}, {ml,mg} € P are
distinct, we have

9 (dgio,iny g goys Aies eads Ata o} A s io ia}) 7 0- (1.5)
Thenp,, ..., p, is reconstructible from distances.

Proof. Letqi,...,q, € R? be a point configuration with the same distribution of distances, as ., p.,.
Write d’{v. i =lla— ¢;]|?. Then there exists a permutatipne S(n) of the setP such that
“s 2

d{{i,j} = d<p~{i¢j}'
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We wish to use Lemma.2for showing thatp—! is a relabeling, which will imply thap is also a relabeling.
Take any pairwise distinct indicesj, k,1 € {1,...,n}. Then the above equation arid4) imply

9 (dotigys Ao fishys Do ity Aok A 5,01 dopegiey) =
’ ' ’ / / ’ _
9 (d{i,j}vd{i,k}vd{i,w dj d{j,l}»d{k,l}) =0.

It follows from the hypothesisl(5) thaty - {7, j} andy - {k, [} are disjoint (otherwise they would have an
indexig in common). So for disjoint set&, j} and{k, !} we have thaty - {i,j} andy - {k,l} are also
disjoint. This is equivalent to saying thatgf- {i,j} andy - {k,{} have non-empty intersection, then the
same is true fofi, j} and{k,[}. Takea,b,c € {1,...,n} pairwise distinct and sdti, j} := ¢! - {a,b}
and{j,k} = ¢t -{a,c}. Theny - {i,j} N - {k,1} = {a,b} N {a,c} = {a}, hence, as seen above,
{i, j} and{k, 1} have non-empty intersection. Thus the conditibri) of Lemmal.2is satisfied forp 1. It
follows thaty~!, and hence alsp, is a relabelingzp - {i, j} = {x (i), n(j)} with = € S,,. Now it follows
from PropositiorD.1that there exists a rigid motiai\/, T') such that

Ir@iy = Mp; +T
foralli € {1,...,n}. This completes the proof. O

Remark. Take indicesig, i1, %2, j1, j2, k1, k2,11,l2,m1,ma € {1,...,n} as in the hypothesis of Theo-
rem1.3 Explicit computation shows that

9 (d{ioail}’ d{jujz}’ d{klka}’ d{ll,lz}’ d{mhmz}7 d{io,i2}> )

viewed as a polynomial in variablds; ;,, contains the terrﬁd%io’il}d{io,m. Notice that the index, occurs

three times in this term (when writing it out as a product rather than squaring the first variable). It follows
from Boutin and Kemper], Proposition 2.2(b) and Lemma 2.3] that this term does not occur in any relation-
ship of degree 3 between thlg; ;. In particular,g (dgiy.i,1, (i1 ats Ak kot> Atnitat> Ama,mats i in})

is not a relationship between tidg; ;. It follows that there exists a dense, open sulsseT (R?)" such

that for all point configurationgp, ..., p,) € € the hypotheses of Theorem3 are met. This provides a

new proof for the fact that “most” point configurations are reconstructible from distances, which appeared in
greater generality in/) Theorem 2.6]. N

How many tests do we have to conduct for checking that the conditioAsSrafe satisfied? There ane
choices forig, the index that is repeated. For each choicé pthere argn — 1)(n — 2) choices fori; and
iz (since these three indices must be distinct). Having ch@gsén, andis, there are(g) — 2 choices for the
set{j1, 72}, (g) — 4 choices for the seftk;, k2 } and so on. Altogether, we obtain

e ()9 ()9 (6) 9 ()9

]‘ |4
T (n'' = 7n'" — 8n” 4 138n® — 83n" — 983n° + 1074n° + 2996n" — 3672n° — 3296n> + 3840n)

choices.

Corollary 1.4. There exists an open and dense@et (R?)" of reconstructible:-point configurations and
an algorithm inO(n!!) steps to determine whether ay, . .., p,) € (R?)" lies in.

Remark 1.5. The algorithm given by Theoreth3can be generalized ™ if n > m + 2. For each choice
of m + 2 indicesiy, . . . , i,,+1 We have the relationship

det (dgi, i,y — dyi,io} — d{i,uio})y,u:1,...,m+1 =0,
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n  # combinations CPU time in seconds
5 100,800 72

6 2,059,200 1,170
7 19,535,040 9,92(

8 120,556,800 58,375

Table 2: Time required to check for the reconstructibility ofrapoint configuration.

which can be expressed as (d{io,il}, e 7d{im,,im+1}) = 0 with g,,, an appropriate polynomial ik :=

(m;z) variables. Now we obtain a generalization of TheorkBwhich says that if for all pairwise distinct

choicesSy, ..., Sy € P with S; N S, # () we have

gm (ds,,...,ds,) #0, (1.6)
then the configuratiops, . . ., p,, is reconstructible from distances. We see that there are
T (" AN m?4+3m+1
n(n—l)(n—2)j1:[2(<2>—j)—0(n )

steps for checking the reconstructibility pf, . . ., p,,. It also follows from Boutin and Kemper!] Propo-
sition 2.2(b) and Lemma 2.3] that there exists a dense open sQbSgfR™)" where the inequalitiesl(6)
are all satisfied.

2 Numerical Experiments

A simple Matlab code (see the appendix) was used to check for the reconstructibility ofispoiet con-
figurations. In the code, we traded simplicity for speed in an attempt to make the algorithm more easily
understandable. Even so, we were able to show that sep@nt configurations were reconstructible,
with n = 5,6,7 and ever8 in a reasonable time. Corresponding CPU times and number of combina-
tions to be checked are given in Talde The computations were done using Matlab version 6.1 on a Sun
(4xultraSPARC-II, 480 MHZ).

An important point to observe is that if a point configuration fails to satisfy one of the conditions in
(1.5), it does not mean that it is not reconstructible. For example, it is not hard to show that every square is
reconstructible (see Boutin and Kempér Example 2.12]). But, as one can check, squares satisfy neither
(1.5 nor (1.3). This is due to the fact that squares have repeated distances. Indeed, anypbairar
configuration with repeated distances will fail the reconstructibility test. (See Boutin and Kefiper &
proof of this fact and ideas on how to modify the algorithm to take care of point configurations with repeated
distances.) Also, the point configuration given by

pP1 = (070)7]72 = (77 O)ap?) = (5; _1)ap4 = (Sa _3)7]95 = (1172)

does not satisfy1(.5), even though its pairwise distances are all distinct. However, one can show that it is
actually reconstructible. (It suffices to show that the permutations of the distances whicly mqlal to
zero all violate one of the relationships that exist between the pairwise distances of five points. We checked
this numerically.) Our test is thus not perfect.

Observe that, when using points with small integer coordinates, the polyngogialbe evaluated exactly
on a computer. We can thus determine precisely whether such a point configuration satisfies the conditions
of (1.5). An interesting question is: given a planapoint configuration with integer coordinates and lying
inside the boX0, N] x [0, N], what are the chances that it will fail the reconstructibility test? Numerical
experiments showed that it is quite likely, even when configurations with repeated distances are excluded.
For N = 3, we found that about 61% of configurations of four points whose distances are not repeated
fail the test. (More precisely, we generated all possiple= (z1,y1), p2 = (z2,¥2), p3 = (3,¥3),
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pa = (x4,y4) With coordinates if0, 1,2, 3} and such that either; < z; 1 orz; = x; 41 andy; < y;+1, for
alli = 1,2, 3, 4. Of those 1820 four-point configurations, we found that 1636 had repeated distances while a
total of 1748 failed the test.) F@¥ = 4, this percentage went down to about 30%, which is still quite high.

It would be interesting to determine whether such high rates of failure are also observed when the coor-
dinates of the points are not necessarily integers. But, in general, floating-point arithmetic prevents us for
determining whether a polynomial function is exactly zero. We must thus replage-the in conditions
1 and 2 by|g| < e, for somee determined by the machine precision and possible noise in the measure-
ments. However, numerical tests have shown that if the coordinates of four points are chosen randomly in
(0,1) (using the Matlalrand function), then the polynomia} in (1.5) rarely takes very small values. For
example, after generating 5000 different random four-point configurations, we found that only 22 of those
generated g with a value less thah0~". In another set of 5000 four-point configurations, we found only
6 which generated a with a value less tham0~—8. In a final set of 10,000 four-point configurations, we
found none which generatedgawith a value less thah0—°. As these values are well above the maximal
error expected with such data when evaluagngsing Matlab, this implies that none of the 20,000 random
four-point configurations we generated could possibly fail the test.

3 The Case of Orientation Preserving Rigid Motions in the Plane

In the previous two sections, we considered the case where the shape of an n-point configurations is defined
by p1,...,p, € R™ up to rigid motions. Recall that the group of rigid motiongiiff, sometimes called the
Euclidean group and denoted Bi(m), is generated by rotations, translations and reflectiof®’in How-

ever, in certain circumstances, it may be desirable to be able to determine whether two point configurations
are equivalent up to strictly orientation preserving rigid motions. The group of orientation preserving rigid
motions, sometimes called tispecial Euclidean groupnd denoted by E(m), is the one that is generated

by rotations and translations ™.

For simplicity, we again restrict ourselves to the planar ease 2. Given a planar point configuration
p1,...,pn € RZ, we would like to be able to determine whether any other planpoint configuration
qi,---,qn 1S the same apq,...,p, up to a rotation and a translation? Given apyg;, ¢; in the plane,
denote by, 4. 4. the signed area of the parallelogram spanned; by ¢; andg, — ¢;, so

Aqiqj.qx = det(Qi — 4k, 45 — Qk)'

Since signed areas are unchanged under rotations and translations, the fln&for R? x R? x R? — R
defined by

(2 _ 2 2 2
I((h’ 42, 43, Q4) - (a(J17Q27(14 aQ17(J37Q4)(a(J17Q27(13 aQ17(J37Q4)
2 2
(aql,qQ,qg - a’ql,qz,q4>(aq1,q2;q3 - atI1,qz,Q4 + 2aQ1:Q37q4)

(aql,qz,qa —2aq,,92,qs t aql,q:s,q4)(2aq1,q2,qs — Qg ,q2,q0 T aql,qs7q4) (3.1)

is invariant under the action &f£(2). Moreover, one can check that it is also invariant under a relabeling
of the four pointsqy, ¢2, g3, ¢4. However, it isnot invariant under rigid motions in general. Indeed, any
transformation which is a rigid motion but doest preserve the orientation will transforfinto —1.

Given ann-point configurationyy, . . ., ¢, with n > 4, we can evaluaté on all possible subsets of four
points of{q, ..., ¢, }. We consider the distribution of the value of thé%&e i.e. the distribution of the

Ii1,i2,i3,i4 = I(QilaQizaQigaQi4)> for all 1 <l <13<14 € {1, - ,TI,}.

Proposition 3.1. Letn > 4 and letpy,...,p, € R? be ann-point configuration which is reconstructible
from distances. Assume that the distribution of kiseof this point configuration is not a symmetric function
(i.e. that the distribution of thé’s is not the same as the distribution of thd’s.) Letq,...,q, € R? be
anothern-point configuration. Then both the distribution of the distances and the distribution dfstiod

the two point configurations are the same if and only if there exists a rotation and a translation which maps
one point configuration onto the other.
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Proof. Observe that, in addition to being invariant under rotations and translations of the points, the dis-
tribution of the value of thd'’s is also independent of the labeling of the points. The same holds for the
distribution of pairwise distances. So if twopoint configurations are the same up to a rotation, a transla-
tion and a relabeling, then the distribution of the and the distribution of the distances are the same for
both. Thus théf is clear.

Now assume that the distribution of the distances and the distribution 6kthee the same for both point
configuration. Sinces, ..., p, is, by hypothesis, reconstructible, this implies that there exists a rigid motion
(M,T) and a relabelingr : {1,...,n} — {1,...,n} such thatMp; + T = q,@, foralli = 1,...,n.

If (M,T) is notinSE(2), then it maps eacli(p;,, pi,, Pig, Pi,) 10 —I(Diy, iy, Pig, i, ). But this is a
contradiction, since the distribution of ttés is not symmetric. Thug is in SE(2). This shows thenly

if. O
Remark 3.2. One can actually show that if,...,ps is equivalent tog,...,qs up to a rigid motion,
thenp,...,p4 is equivalent tagy, . . ., ¢4 UP to a rotation and a translation if and onlylifp1,...,ps) =
I(q1,...,q4). (Indeed, is one of the two fundamental invariants of the actiol@f(2) x S, onRR? x R? x

R? x R? which we obtained using the invariant theory package in MagihaBy construction, these two
invariants thus distinguish the orbits §#(2) x S3;. The other invariant is actually unchanged under the
action of the full Euclidean grouf’(2) and sol alone distinguishes the orbits 8#/(2) within the orbits of
E(2).

4 The Case of Rotations, Translations and Scalings

In certain circumstances, it may also be desirable to be able to determine whether two point configurations
are the same up to a rigid motion and a scaling. This can be done using a simple variation of the previous
approach. Given a distribution of distande; ;1 = |[p; — p;||*}, letd,,.. be the largest distance

dmae = max{dy; 41{i,7} € P},

which can be assumed to be non-zero since otherwise all points coincide. We can consider the distribution

of the rescaled distancéé;%}{i,j}ep. In addition to being invariant under rigid motions and relabeling,
the distribution of the rescaled distances is also invariant under a scaling of the points

p; — Ap;, foreveryi =1,...,n.
for any A € R,.

Proposition 4.1. Letn > m+2. There exists an open, dense sul§sef (R™)™ such that if am-point con-

figurationpy, ..., p, is such thatfp,...,p,) € Q, thenpy, ..., p, is uniquely determined, up to rotations,

translations, reflections, scalings and relabeling of the points, by the distribution of its rescaled pairwise
P . . . m,2 3m-+412 .

distances{ 521 } ; ;ycp. Moreover, there is an algorithm io)(n ™~2"") steps to determine whether

(plv s 7pn) S Q

Proof. Letpy,...,p, € R™ be am-point configuration which is reconstructible from distances and whose
pairwise distances are not all zero. Observe that,if..,q, € R? is anothem-point configuration, then

the distributions of the rescaled distances of both point configurations are the same if and only if there exists
a rigid motion followed by a scaling which maps one point configuration onto the other. The claim is thus a
direct corollary of Theorem 2.6 from Boutin and Kempéfgnd of Remarkl.5. O
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Appendix

% This is a simple Matlab function that determines whether

% the pairwise distances between the points of the plafmoint configuration
% defined by the: columns of &-by-n matrix p satisfy the conditions ofi(5)
% with 0 replaced by some (small) number e.

function g=evaluatgy(p,e)
% p is a2-by-n matrix.
% e should be chosen depending on the machine precision.
% This function return$ if g < e for all sets of pairs
% of the conditions irl.5and 1 otherwise.
n=length(p);
% Compute the squares of the distances d.
fori=1:n-1, for j=i+1:n
d(i,)=sum((p(i,:)-p(.-))."2);
end, end
d(n,n)=0;
d=d+d’;
for i0=1:n, for i1=1:n, if i1"=i0
x12=d(i0,i1);
fori2=1:n, ifi2"=il & i27=i0
x34=d(i0,i2);
for j1=1:n-1, for j2=j1+1:n
if j17=i0 | j2°=i1) & (j1"=il | j2°=i0) & (j17=i0 | j27=i2) & (j1"=i2 | j27=i0)
x13=d(j1,j2);
for k1=1:n-1, for k2=k1+1:n;
if (k17=i0 | k27=i1) & (k1"=il | k27=i0) & (k1™=i0 | k27=i2) & (k1™=i2 | k27=i0) & . ..
(k1™=j1| k27=j2) & (k17=j2 | k27=j1)
x14=d(k1,k2);
for11=1:n-1, for I2=11+1:n
if (117=i0 | 127=i1) & (I17=i1 | 127=i0) & (117=i0 | 127=i2) & (I17=i2 | 127=i0) & ...
(11751 | 127=5j2) & (117=j2 | 1275j1) & (117=K1 | 127=k2) & (117=k2 | I2"=k1)
x23=d(I1,12);
for m1=1:n-1, for m2=m1+1:n
if (m1™=i0 | m27=i1) & (M1™=il| m27=i0) & (M1™=i0| M27=i2) & ...
(m1™=i2| m27=i0) & (M1™=j1| m27=5j2) & (M17=)2| m27=j1) &. ..
(m1™=k1| m27=k2) & (m1™=k2| m27=k1) & (m1™=I1| m27=I2) & (m1™=I2| m2"=I1)
x24=d(m1,m2);
mll=-2*x14;
m12=x12-x14-x24;
mM13=x13-x14-x34;
m22=-2*x24;
M23=x23-x24-x34;
m33=-2*x34,
Mu= m11*m22*m33-m11*m23°2-m12°2*m33-m12*m23*m13+m13*m12*m23-m22*m13°2;
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if Mu==
g=0;
return
end, end, end, end, end, end, end, end, end, end, end, end,
end, end, end, end, end, end
g=1;
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