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Abstract

The main purpose of this paper is to verify a conjecture of Derksen and Kemper
concerned with the boundedness of rings of invariants. We shall make use of some
results connected with the “transfer principle” in invariant theory. These results are
dealt with in some generality because of their independent interest and potential for
further applications.

1 Introduction

If K is an infinite field and V' is a finite-dimensional K-space (that is, vector space over
K) we write K[V] for the K-algebra of polynomial functions on V', which by definition
is the polynomial ring generated by any basis of the dual space V* of V. It is a graded
algebra, K[V] = @,5o K[V];. If G is a group acting linearly on V, then G also acts on
K[V] by left translations: for £ € K[V]and g € G, g€ is defined by (g€)(v) =& (g_lv) for
allv € V. The ring of invariants, K[V]¢, is also a graded algebra, K[V]¢ = Do K[VI§.
For any graded K-algebra, A = @i>0 A;, we write

B(A) =min{d € N: A is generated by Ao @ ---® Ay},

where, by convention, the minimum over an empty set is oco.

Now suppose that G is a linear algebraic group over an algebraically closed field K.
By a G-module we mean a finite-dimensional K-space V with a linear G-action which is
given by a morphism of varieties G x V' — V. (By contrast, a KG-module is a K-space,
not necessarily finite-dimensional, with a linear G-action which need not be given by a
morphism.) We define 5(G) to be the element of NU {co} given by

B(G) =sup {p (K[V]G) : V a G-module} .

We say that G has a global degree bound on invariants if 5(G) < oo, that is, there exists
an integer m such that 3 (K[V]%) < m for every G-module V. Note that in [2] the
shorter phrase “G has a global degree bound” is used for the same property. Our main
result is as follows.

Theorem 1.1. Let G be a linear algebraic group over an algebraically closed field K.
Then the following conditions are equivalent:

(a) G has a global degree bound on invariants;
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(b) G is finite and char(K) does not divide the order of G.

This establishes Conjecture 2.3 of Derksen and Kemper [2]. In [2] the case char(K) =
0 was settled. Our proof of Theorem 1.1 proceeds in the following steps. The implica-
tion “(b) = (a)” is given by the Noether bound, which in characteristic zero or larger
than |G| goes back to Noether [9], and which was recently proved independently by
Fleischmann [5] and Fogarty [0] to hold also if char(K) < |G| but char(K) 1 |G].

In order to prove the converse implication “(a) = (b)” we proceed case by case. If
G is finite with |G| divisible by char(XK), then G does not have a global degree bound
on invariants by results of Richman [10]. It remains to prove that if G is infinite then
B(G) = oo. In Section 2 of this paper we deal with the case where the connected
component G° is not unipotent. In particular the result holds for SLo(K). Also in
Section 2 we reduce the case where G is infinite and G° is unipotent to the special case
where G is the additive group of K. Finally, in Section 3, this special case is deduced
from the result for SLo(K) by means of an isomorphism commonly known as “Roberts’
isomorphism” (see Example 3.6).

The strategy of our proof is very similar to that in Derksen and Kemper [2]. The
main result of [2] shows that if G is infinite and char(K) = 0 then 5(G) = co. Here we
establish the same result for arbitrary K.

The need to make sure that Roberts’ isomorphism holds in arbitrary characteristic
led us to a close study of results connected with the transfer principle (see Grosshans [7]),
and thus to the reformulation of Roberts’ isomorphism as a special case of a result which
yields an isomorphism under much more general hypotheses (Corollary 3.5). We give two
approaches to the verification of these hypotheses, one which is completely elementary
and works for any infinite ground field (Theorem 3.2), and another (Theorem 3.4) which
uses some non-elementary facts from the theory of algebraic groups, and therefore re-
quires an algebraically closed ground field (or a scheme-theoretic setting). This material
is presented in Section 3, where we also give some further references to the literature.

2 Global degree bounds

In this section, G is a linear algebraic group over an algebraically closed field K, and
G° is the connected component containing the identity. Note that there exists a faithful
G-module (either by definition of the linearity of G or, if “linear” is taken to mean
“affine”, by Humphreys [3, Theorem 8.6]). We begin by dealing with the case where
G° is not unipotent. In the following proposition, only the implication “(c) = (a)” is
needed for the proof of Theorem 1.1. We include the other implications for the sake of
completeness.

Proposition 2.1. The following conditions are equivalent:
(a) G° is unipotent;
(b) there exist only finitely many isomorphism types of irreducible G-modules;

(c) there exists a faithful G-module U such that there are only finitely many isomor-
phism types of irreducible G-modules occurring among the composition factors of
the modules K[U]; fori > 0.
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Proof. We start by showing that (a) implies (b). Let V' be a non-zero G-module. Since G°
is normal in G, the subspace V& of G°-invariants is a G-submodule. By Humphreys [2,
Theorem 17.5], (a) implies that V° is non-zero. Thus, if V is irreducible, V = V& and
so V may be regarded as a G/G°-module, yielding an irreducible K (G/G°)-module. Non-
isomorphic irreducible G-modules clearly yield non-isomorphic irreducible K(G/G°)-
modules. Since there are only finitely many isomorphism types of irreducible K (G/G°)-
modules, we obtain (b).

The implication “(b) = (c)” is clear from the fact that there exists a faithful G-
module, as observed above.

To prove that (c) implies (a), assume that G° is not unipotent. Let 7' be a maximal
torus of G°. Then T # 1 (otherwise G° is nilpotent by [3, Proposition 21.4B] and so
G° is unipotent by [8, Theorem 19.3]). We will show that for every faithful G-module U
infinitely many isomorphism types of G-modules occur among the composition factors of
the K[U]J;. If two irreducible G-modules do not have the same composition factors when
regarded as T-modules then they are not isomorphic. Thus it suffices to prove the result
in the case G = T. Hence we may assume that G = D,,(K) (a direct product of n copies
of the multiplicative group) for some n > 1. Thus (see [3, §16]) each G-module is the
direct sum of 1-dimensional submodules, where each such submodule is determined up to
isomorphism by its character o : G — K\ {0}. Since U is faithful, K[U]; has a summand
with character o where o # 1. Hence K[U]; has a summand with character o’. Since

the characters 1, a, a2, ... are distinct, (c) cannot hold. Thus indeed (c) implies (a). [

Proposition 2.2. Suppose that G° is not unipotent. Then B(G) = oc.

Proof. Let k be an arbitrary positive integer. It suffices to show that there is a G-
module V' such that 3 (K[V]G) > k. As observed above, there is a faithful G-module
U. By Proposition 2.1 there is an irreducible G-module X which does not occur as a
composition factor of K[Uly, K[U]1, ..., K[U]g—-1, but which occurs as a composition
factor of K[U],, for some m > k. We may assume that m is minimal with this property.

Let W be a submodule of K[U],, of smallest possible dimension such that X is a
composition factor of W. Thus, if W' is any proper submodule of W, X is not a compo-
sition factor of W', so X is a composition factor of W/W’. Take ¢ € Homg(W, K[U];)
with j < m. Since X is not a composition factor of K[U];, the above argument
shows that ker(y) cannot be a proper submodule of W. Hence ¢ = 0. Therefore
Homg(W, K[U];) = 0 for all j < m. But, clearly, Homg(W, K[U],,) # 0. Set V. = WaU.

We proceed essentially as in the proof of Derksen and Kemper [2, Proposition 1.2].
The algebra K[V] can be identified with K[W]| ® x K[U] and thus has a G-invariant
bigrading, K[V] = @K[V]@j, where K[V]@j = K[W]l QK K[U]] For all [ € N, K[V]l =
@D, K[V]i,; and K[V]¢ = D K[V]lG] Furthermore, for all j,

K[VI¢; = (W* @k K[U];)¢ = Homa(W, K[U];).

Hence K[V]ﬁj =0 for j < m but K[V]fm # 0. Let A be the direct sum of all K[V]Ej
with i # 1. Note that A is a subalgebra of K[V]%. Since K[V]lGJ = 0 for j < m it follows

that K[V]S,..., K[V]$ are contained in A. But K[V]$ ., is not contained in A because
K[V]le # 0. Therefore (K[V]G) > m+ 1> k, as required. O

We shall now consider the general case. If N is a closed normal subgroup of G we
have

B(G/N) < B(G), (2.1)
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since every G/N-module is also a G-module. Moreover, if H is a closed subgroup of G
of finite index, then by Schmid [12, Proposition 5.1] we have

BH) < B(G). (2.2)

(Schmid stated this result for finite groups, but the proof only uses that the index is
finite.)

Suppose that G is infinite. We wish to prove that 5(G) = oo. By (2.2) we may
assume that G is connected. By Proposition 2.2 we may also assume that G is unipo-
tent. Thus, by Humphreys [8, Theorem 19.3], G has a closed normal subgroup N such
that dim(G/N) = 1. Also G/N is unipotent by [3, Theorem 15.3(c)]. Thus, by [,
Theorem 20.5], G/N is isomorphic to the additive group of K. We identify this group
with the group of upper unitriangular matrices Uy(K). By (2.1) it suffices to prove that

B (Uz(K)) = 0.

3 Isomorphisms of spaces of invariants

The results proved in this section are closely connected with results described by Gross-
hans [7] in relation to the “transfer principle”. Such results have a long history, as out-
lined in [7, Chapter 2, Introduction]. In particular, Roberts [11] in 1861 (the year is often
given as 1871) introduced an isomorphism, often now called Roberts’ isomorphism, which
is the special case G = SLy(K) of the isomorphism given by Corollary 3.5 below (see Ex-
ample 3.6), and which in characteristic 0 has Weitzenbock’s theorem (see Grosshans [7,
Theorem 10.1]) as a consequence. Other references include Seshadri [13], Fauntleroy [1],
and Tyc [14]. All these are concerned with the special case mentioned above. Our treat-
ment has the merits that it is elementary, self-contained and formulated rather generally.
(Only Theorem 3.4 needs anything non-trivial from the theory of algebraic groups, and
this result can be bypassed in our application by the use of Theorem 3.2.)

Let G be any group. Furthermore, let K be any field and V a K-space. We write
F(G,V) for the K-space consisting of all functions from G to V: it is a K-algebra if V
is a K-algebra, as in the case V = K. Let F' be a subspace of F(G, K) and consider
the tensor product F ® V (all tensor products will be taken over K). Each element
a=)Y fi®uv; of F®V determines an element & of F(G, V) satisfying @(g) = >_ fi(g)vi
for all g € G. By choosing the v; to be linearly independent it is easily seen that a — @
is an embedding. Thus we often identify a with @ and regard F' ® V as a subspace of
F(G,V).

For a subgroup H of G we define

Fou={f€F:f(gh)=f(g) forall geG, he H}.

This is the subspace of F' consisting of all functions which are constant on the left cosets
gH of H. (It can also be thought of as consisting of the functions which are invariant
under the action of H by right translation.) Then, regarding F'® V' and Fg /g ® V as
subspaces of F(G,V), we easily see that

Fop®V ={a € FRV :a(gh)=a(g) forall g€ G, he H}. (3.1)
Suppose that V' is a KG-module (not necessarily finite-dimensional). Then we define

(FoV)¢ ={ac FoV:a(gy) = ga(y) for all g,¢g' € G} (3.2)
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and
(Fope@ V)¢ =(FeV))N(FguaV). (3.3)

These may be interpreted as spaces of G-invariants when F' is closed under the action
of G on F(G, K) by left translations because in that case F' ® V may be regarded as
a KG-module under the diagonal action of G, with Fg/y ® V' as a submodule, and
(F® V)% and (Fg /H® V)& are the spaces of G-invariants in the usual sense.

We say that V' has coefficients in F' if there is a K-linear function p: V — F®V
such that the action of G is given by

gv = (p(v))(g) forall ge G, veV. (3.4)

Equivalently, with respect to any basis {v; : ¢ € I} of V, the functions f; ; satisfying
gvi =>_; fi,j(g)v; all belong to F', and for each i there are only finitely many j € I with
fij # 0. (The connection is given by p(v;) = Zj fi,j @ v; for all 4.) In this terminology,
if G is an algebraic group, then a finite-dimensional K G-module is a G-module if and
only if it has coefficients in K[G]. Moreover, if a linear algebraic group G acts on an
affine variety W by a morphism G x W — W, then K[W], the ring of regular functions
on W, clearly has coefficients in K[G].

We can now formulate a generalisation of the “transfer principle” for algebraic groups
as stated in Grosshans [7, Theorem 9.1]. The proof is elementary and similar to the proof
in [7].

Theorem 3.1. Let G be any group, H a subgroup, and K a field. Let F' be any space
of functions from G to K and let V be a KG-module with coefficients in F'. Then there
s an isomorphism of K-spaces

P . (FG/H ® V)G — VH

given by ®(a) = a(e) for alla € (Fg/g ® V)&, where e denotes the identity element of
G.

Proof. For a € (Fg g ® V)¢ and h € H, (3.2) and (3.1) give

Thus a(e) € V. Therefore ® is well-defined. Clearly ® is K-linear. If ®(a) = 0 then
0= ga(e) = a(g) for all g € G, by (3.2). Thus a = 0. Therefore ® is injective.

To prove surjectivity take v € VH and set a = p(v) € F ® V, with p as in (3.4).
Thus gv = a(g) for all g € G. Hence, for all g € G, h € H,

a(gh) = (gh)v = g(hv) = gv = a(g).
Thus, by (3.1), a € Fg/p ® V. Also, for all g,¢' € G,
algg’) = (99")v = g(g'v) = ga(g').
Thus, by (3.2), a € (F® V). Hence, by (3.3), a € (Fg g ® V). Finally,
O(a) = ale) =ev =w.

Therefore ® is surjective. O



6 R. M. Bryant, G. Kemper

The problem with Theorem 3.1 is that it is usually not easy to work with Fg /g,
for example in the case that F' = K|[G] for G an algebraic group. The purpose of the
next two results is to derive isomorphisms between Fg 5 and objects which are better
to work with.

Suppose now that K is any infinite field. If V and W are finite-dimensional K-spaces
and X C V, a function ¢ : X — W is called a polynomial function if there are dim W
polynomials over K in dimV variables which give the coordinates of ¢(v) in terms of
the coordinates of v for all v € X (with respect to fixed but arbitrary bases of V' and
W). Furthermore K|[X] denotes the algebra of all polynomial functions from X to K.
Recall that a linear algebraic group G is by definition a Zariski-closed subset of some
vector space K™, and in this context K[G] is just the ring of regular functions on G.

Let U be a finite-dimensional K-space and let K (U) denote the field of quotients of
K[U]. Let x = ¢/¢ € K(U) where £,¢ € K[U] and &' # 0. For u € U such that {'(u) # 0
we define x(u) = &(u)/¢(u) € K. For d € K[U]\ {0} let Uy = {u € U : d(u) # 0}
and let K[U]q denote the set of elements of K(U) of the form &/d" where £ € K[U] and
r € N.

Theorem 3.2. Let K be an infinite field and G a group such that G C K™, for some
m € N. Let U be a finite-dimensional K G-module with coefficients in K[G]. Let x € U
and let m : G — U be defined by w(g) = gz for all g € G. Write G, = {g € G :
gr = x}. Let dy,...,d, be non-zero elements of K[ ] and, fori = 1,...,n, let p; :
Us, — G be a function given by elements 5 ...,{ of K[Ulg, such that ¢;(u) =

(52(1 (u), ... ,EZ-(m (u )) € G for all u € Uy,. Suppose that
(a) 7o p; is the identity on Uy, fori=1,...,n,
(b) K[Ula, N---NK[Ulg, = K[U] (that is, di,...,dy are coprime), and
(c) m1(G) CUyg U---UUy,.

Then there is an algebra isomorphism * : K[U] — K[G|q/q, given by n*(§) = Eom for
all ¢ € K[UJ.

Proof. Let m* : K[U] — F(G, K) be defined by 7*(§) = £ om for all £ € K[U]. It is
easily verified that 7* is an algebra homomorphism. Since U has coefficients in K[G],
the function 7 : G — U is a polynomial function. Hence € o w € K[G] for all £ € K[U].
Since 7 is constant on the left cosets of G, so is { ow. Thus 7*(K[U]) C K|[Glg/q,-
Hence we have 7* : K[U] — K|G]q/q, -

Let £ € K[U] satisfy 7*(¢) = 0. Then, for all u € Uy,, we have (£ om)(¢1(u)) = 0.
But, by (a), m o ¢y is the identity on Uy,. Hence &(u) = 0 for all w € Ug,. Thus
&(u)di(u) =0 for all uw € U, and so £ = 0. Therefore 7* is injective.

To prove surjectivity, let f € K[G]g/q, € K[G] and think of f as a polynomial in m

variables. With the fi(j) as in the statement of the theorem, define y; = f(gi(l), . ,51.(7”)).
Thus x; € K[U]q, and

Xi(u) = (fopi)(u) forall weU,,. (3.5)

Let g € 7 Y(Ug,). Then, by (a), m(pi(7(g))) = m(g9) and so ¢;(7(g9))Gz = gG.. Since
f € K[G]g/q, we obtain f(pi(m(g))) = f(g). Therefore, by (3.5),

Xi(m(g)) = f(g) forall gen'(Uy). (3.6)
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Let 4,5 € {1,...,n} and u € Ug, N Ug;. Write g = ¢;(u). Then, by (a), n(g9) = u €
Ug; NUyg;. Hence, by (3.6) applied to both i and j,

Xi(u) = f(g) = x;(u). (3.7)

Write x; — x; = n/(d?d;j) where n € K[U]. Then, by (3.7), n(u)d;(u)d;(u) = 0 for all
u € U. Thus n = 0 and so x; = x;. Write x for the element such that x = x; for all i.
Then, by (b), x € K[U].

Let g be any element of G. Then, by (c), there exists i such that g € 7~ 1(Uy,).
Hence, by (3.6),

f(g) = x(7(9)) = (x o m)(g) = (7" (x))(9)-

Therefore f = 7*(x) and so 7* is surjective. O

The following example illustrates how the hypotheses of Theorem 3.2 can be easily
verified.

Ezample 3.3. Consider the group G = SLp(K) C K* (K any infinite field), and let
U = K? be the natural 2-dimensional G-module. Consider the point z = <(1)> e U.
Clearly G, = Uy(K) is the additive group. The map « : G — U is given by

" 9-0)

Define dl,dQ € K[U} and p1 - Ud1 — G, 9 : Ud2 — G, by

“ @ - > (;f) =,
A= 8w ()= )

Then it is easy to verify that the hypotheses of Theorem 3.2 hold.

Example 3.3 extends in a straightforward way to the case G = SL,(K) for n > 2. In
that case we obtain a point stabilizer G, which is isomorphic to the semidirect product
K" 1 % SL,_1(K).

Theorem 3.2 is sufficient for our application. However, for purposes of comparison,
we give a parallel theorem for algebraic groups. It is less elementary than Theorem 3.2
but can be proved quite quickly from standard results. The theorem is essentially well
known. It has some overlap with Grosshans [7, Theorem 4.3 and Theorem 9.3], and the
terminology follows Borel [1].

Theorem 3.4. Let G be a linear algebraic group over an algebraically closed field K and
suppose that G acts on a normal, irreducible, affine variety U by a morphism GxU — U.
Let x be an element of U such that

(a) Gz (the G-orbit of x) is open in U,
(b) dim(U \ Gz) < dimU — 2, and

c) the morphism ©: G — Gx given b — gx 18 separable.
P g yg g p
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Then there is an algebra isomorphism n* : K[U] — K[G|q/q, given by 7*(§) =& o for
all € € K[U).

Proof. We may view 7 as a morphism 7 : G — U. For { € K[U] we have { o € K[G].
Since 7 is constant on the left cosets of G, so is { o 7. Hence 7* : K[U] — K|[Glg/q,
may be defined by 7*(§) = £ o« for all £&. Clearly 7* is an algebra homomorphism. If
(&) = 0 then & vanishes on 7(G) = Gz and so £ = 0 by (a). Hence 7* is injective.

To prove surjectivity take f € K[G]g/q,. Thus f is constant on the left cosets of
G,. By (c) and Borel [1, Proposition 6.7], 7 : G — Gz is a quotient morphism. Hence,
by [1, §6.1], m has the universal mapping property. Therefore there exists a morphism
X : Gz — K such that Y om = f. By Grosshans [7, Theorem 4.2] or Eisenbud [3,
Corollary 11.4 and remark following], (a) and (b) imply that Y extends to x € K[U].
Thus 7*(x) = x om = X om = f. Therefore 7* is surjective. O

If G and U are as in Theorem 3.2 or Theorem 3.4, G acts on K [U] by left translations.
Thus, if V is a KG-module, G acts diagonally on K[U] ® V' and we may consider the
space of invariants (K[U]®V)%. For the same reasons as given for F®V at the beginning
of this section, we may regard the elements of K[U]® V as functions from U to V. The
following corollary is particularly interesting in the case where G is a linear algebraic
group acting on an affine variety W (or, in particular, a finite-dimensional K-space) by a
morphism Gx W — W, and V = K[W]. With x € U as before, the corollary relates G-
invariant regular functions on W to G-invariant regular functions on the larger variety
UxW.

Corollary 3.5. Suppose that the hypotheses of Theorem 3.2 or 3.4 are satisfied. Let V
be a KG-module with coefficients in K[G]. Then there is an isomorphism of K -spaces

¢ (K[U]@ V)¢ — vEe
given by p(a) = a(z) for all a € (K[U] @ V)C.
Proof. By Theorem 3.2 or Theorem 3.4 we have an isomorphism

W*®idle[U]®V—>K[G]G/GI®V

*

It is easily verified that 7* is G-equivariant with respect to the actions of G by left
translation. Thus 7n* ® idy restricts to an isomorphism

(KUl V) — (K[Glg/q, @ V)°.

Let ® be the isomorphism of Theorem 3.1 with F' = K[G] and H = G, and define
¢ =®orn'. Thus p: (K[U] ® V)¢ — V& is an isomorphism. For a € (K[U] ® V)¢
with a = > & ® v; we have

p(@) =) (Gom@u) =Y (Gom)(e)vi =Y &iz)v = afx).
L]

Ezample 3.6. This is a continuation of Example 3.3. Let G = SLy(K) with K any
infinite field, and let U = K? be the natural G-module. Then, for any KG-module V/
with coefficients in K[G], Corollary 3.5 yields

(K[U) @ V)3=E) =yl
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In the special case where V' = K[W] with W a G-module, we obtain
K[U @ W]st2(K) = Ry V200,

This is known as Roberts’ isomorphism. It is usually only formulated and proved for the
case where K is algebraically closed.

For our purposes, it is interesting to draw the following two consequences. Note that
U% is always non-empty if U is a KG-module.

Corollary 3.7. Suppose that the hypotheses of Theorem 3.2 or 3.4 are satisfied. Suppose
further that US is non-empty. Let V be a KG-module with coefficients in K[G]. Then
there is a homomorphism of K-spaces

g VG V@

which restricts to the identity on VE. If V has the structure of a graded vector space or
a K-algebra which is respected by the G-action, then this structure is also respected by k.

Proof. Let y € U%. Let ¢ : (K[U] ® V)¢ — V% be the isomorphism of Corollary 3.5.
For o € (K[U] ® V)€ it is easy to check that a(y) € V&. Thus we may define 9 :
(K[U]®@ V)¢ = V& by ¥(a) = aly) for all a. Set kK =190 p~!. Thus x: VG — V.

Let 1 be the identity element of K[U], that is, the constant function 1. Then, for all
v € VY we have 1 ®v € (K[U]® V)% and (1 ® v) = v. Thus

A(v) = (9o p ) (P(1® ) = I(1®v) = .

Hence & restricts to the identity map on V&,

Let V be graded, V = @iel Vi, with I any index set and GV; C V; for all i. Then
K[U] ® V acquires a grading with (K[U]® V), = K[U] ® V;. Intersections with spaces
of invariants yield gradings of V&, V& and (K[U] ® V)G. Clearly ¢ and ¥ preserve the
gradings. Since ¢ is an isomorphism, ¢! also preserves the gradings; hence so does x.

Now assume that V is a K-algebra and G acts by algebra automorphisms. Then
K[U]®V is a K-algebra in the obvious way and so are V¢, VC+ and (K[U] @ V). It
is easy to see that ¢ and ¢ are algebra homomorphisms; hence so is k. O

Corollary 3.8. Let G be a linear algebraic group and suppose that the hypotheses of
Theorem 3.2 or 3.4 are satisfied. Suppose further that US is non-empty. Then

B(Gz) = B(G).

Proof. Let V be any G-module. Then K[V] is a KG-module with coefficients in K[G].
Corollary 3.7 yields a degree-preserving epimorphism K[V]% — K[V]% of K-algebras.
It follows that 3 (K[V]%) > 8 (K[V]®). Therefore 8(G,) > B(G), as required. O

To complete the proof of Theorem 1.1 we apply Corollary 3.8. In Example 3.3 we
have already verified the hypotheses of Theorem 3.2 for G = SLo(K) and U the natural
G-module (with G, = Uy(K)). (Alternatively, Theorem 3.4 may be used.) Also, U is
non-empty because 0 € UY. Therefore, by Corollary 3.8, 3 (U(K)) = 3 (SLe(K)). But
B (SL2(K)) = oo by Proposition 2.2. This completes the proof.
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