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Abstract

Let G be a finite group acting linearly on a finite dimensional vector space V over
a field K of characteristic p. Assume that p divides the order of G so that V is a
modular representation and let P be a Sylow p-subgroup for G. Define the cohomo-
logical connectivity of the symmetric algebra S(V ∗) to be the smallest positive integer
m such that Hm(G,S(V ∗)) 6= 0. We show that min

{
dimK(V P ) +m+ 1,dimK(V )

}
is a lower bound for the depth of S(V ∗)G. We characterize those representations for
which the lower bound is sharp and give several examples of representations satisfying
the criterion. In particular, we show that if G is p-nilpotent and P is cyclic then, for
any modular representation, the depth of S(V ∗)G is min

{
dimK(V P ) + 2,dimK(V )

}
.

Introduction

Let G be a finite group acting linearly on a finite dimensional vector space V over a field K
of characteristic p, and assume that p divides the group order, |G|, so that V is a modular
representation of G. We write R := S(V ∗) for the symmetric algebra of the dual of V and
RG for the ring of invariants. For an ideal I in RG and an RG-module M , grade(I,M)
denotes the maximal length of an M -regular sequence whose elements lie in I. The depth
of M is grade(RG+,M) where RG+ is the ideal generated by all homogeneous invariants
of positive degree. By the Auslander-Buchsbaum formula, dimK(V ) − depth(RG) is the
projective dimension of RG as a module over a homogeneous system of parameters. Thus
depth(RG) determines a measure of the structural complexity of RG. However, despite
significant recent progress, computing depth(RG) remains, in general, a difficult problem.

The cohomology of the group G with coefficients R, H∗(G,R), has proven to be a useful
tool in determining depth(RG). Let m be the least positive integer such that Hm(G,R) 6= 0.
Then we call ccG(R) := m the cohomological connectivity of the G-module R. In Section 1
we observe that

depth(RG) ≥ min
{

dimK(V P ) + ccG(R) + 1,dimK(V )
}

(1)

where P denotes a Sylow p-subgroup of G. This gives a stronger lower bound than the one
obtained by Ellingsrud and Skjelbred [4]. One might hope that the inequality is actually
an equality. In fact, this was proved to be true if p2 does not divide |G| (see Kemper [10,
Theorem 3.1]) or if G is cyclic (see Ellingsrud and Skjelbred [4] or Campbell et al. [3]).
However, the following example shows that equality does not hold in general.
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Example 0.1. Suppose that q is a power of p and that Fq ⊆ K. Consider the group
G = Un(Fq) of all n × n upper triangular matrices with entries in Fq and ones on the
diagonal. G is a p-group, and for the natural action on V = Kn we have dim(V G) = 1.
Moreover, H1(G,K) 6= 0, so ccG(R) = 1, since H1(G,K) is embedded into H1(G,R)
via the identification of K with the homogeneous component of degree 0 of R. Thus
dimK(V G)+ccG(R)+1 = 3. But it is well known that RG is isomorphic to a polynomial ring
(see Smith [13, Proposition 5.5.5]). In particular, RG is Cohen-Macaulay, so depth(RG) =
n. For n > 3, this is greater than dimK(V G) + ccG(R) + 1. /

This paper is primarily concerned with identifying representations for which equality
holds. Extending the terminology used in Kemper [10], we will call RG flat if

depth(RG) = min
{

dimK(V P ) + ccG(R) + 1,dimK(V )
}
.

As a consequence of (1), the ring RG is simultaneously flat and Cohen-Macaulay if and only
if ccG(R) + 1 ≥ codimK(V P ). Thus, throughout the paper, we will assume ccG(R) + 1 <
codimK(V P ).

As a matter of convenience we will assume that K is algebraically closed. Since extend-
ing K does not change the depth of RG, this assumption does not limit the scope of our
results.

In Section 1 we prove (1) and introduce an ideal i (see also Fleischmann [6] and
Fleischmann and Shank [7]) which plays a crucial role in the paper. In Section 2 we
characterize flatness and give two conditions which together guarantee flatness. In Sec-
tion 3 and Section 4 we explore these two conditions. In Section 5 we apply our results to
groups with cyclic Sylow p-subgroup. In particular we prove that if G is p-nilpotent and P
is cyclic then

depth(RG) = min
{

dimK(V P ) + 2,dimK(V )
}
.

In Section 6 we give several examples of flat RG for G with non-cyclic Sylow p-subgroup. In
Section 7 we use a spectral sequence, analogous to that used by Ellingsrud and Skjelbred [4],
to prove a technical result required in Section 2.

1 The Inequality and the Ideal

For a prime ideal P ∈ Spec(R), define the inertia subgroup as

GP := {g ∈ G | g(f)− f ∈ P for all f ∈ R}.

Fleischmann and Shank [7, Theorem 2.4(ii)] proved that if p does not divide the index
[G : GP] then

depth(RG) = dim(R/P) + grade(p, RG), (2)

where p = RG ∩P.
Assume that p does not divide the index [G : GP]. Then there is a Sylow p-subgroup

P ≤ G, which is contained in GP. Let V P denote the fixed space of P in V and take
I := I(V P ) ⊂ R to be the ideal generated by all linear forms in V ∗ that vanish on V P .
Then I is a prime ideal which can be described as follows:

Lemma 1.1. I = ((g − 1)V ∗ | g ∈ P )R ⊂ P.

Proof. Suppose g ∈ G. Clearly (g − 1)V ∗ ⊆ I(V g). Since the rank of a matrix is equal to
the rank of its transpose, rank ((g − 1) |V ∗) = codim(V g). Thus I(V g) = ((g − 1)V ∗)R.
Furthermore, V P =

⋂
g∈P V

g. Thus, using the fact that the ideal associated to an inter-
section of varieties is the sum of the ideals associated to the varieties, we have I(V P ) =
(
∑

g∈P (g − 1)V ∗)R = ((g − 1)V ∗ | g ∈ P )R.
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On the other hand, obviously P ⊆ GI, so p does not divide [G : GI]. This shows
that I is minimal among prime ideals of R, to which the hypothesis of(2) applies. Define
i := RG ∩ I. Note that, while I may depend on the choice of Sylow p-subgroup, i does not.
Clearly

ht(I) = dimK(V )− dimK(V P ).

Hence (2) gives

depth(RG) = dimK(V P ) + grade(i, RG). (3)

Using Kemper [9, Theorem 1.4]), for any proper ideal I $ RG we have

grade(I,RG) ≥ min {ccG(R) + 1,ht(I)} (4)

Applying (3) and (4) with I = i, yields

depth(RG) ≥ dimK(V P ) + min {ccG(R) + 1,ht(i)} .

Observing that ht(i) = ht(I) = dimK(V )− dimK(V P ) proves the following.

Theorem 1.2. depth(RG) ≥ min
{

dimK(V P ) + ccG(R) + 1,dimK(V )
}
.

2 Characterizing Flatness

The following theorem, which combines the scope of Fleischmann and Shank [7] with the
generality of Kemper [10, Theorem 1.5], underpins our characterization of flatness.

Theorem 2.1. Let g1, g2, . . . , gd ∈ RG be such that the images g1, g2, . . . , gd form a homo-
geneous system of parameters in the quotient ring RG/i. Let M be a module over the ring
EndKG(R) such that (g1, g2, . . . , gd)M 6=M. Then (g1, g2, . . . , gd) is a regularM-sequence
in RG. In particular depthRG(M) ≥ d = dimK(V P ).

Proof. First we prove the result for the special case G = P . Let W := (V G)⊥ = {f ∈
V ∗ | f |V G = 0}. Note that P acts trivially on the quotient V ∗/W . Hence we can apply
Kemper [10, Proposition 1.2] with N = G = P , which shows that for each i there is a map
Ψi ∈ EndKG(R), commuting with the action of the elements g1, . . . , gi−1, gi+1, . . . , gd,
and satisfying Ψi(gir) = r for every r ∈ R. In other words Ψi is a left inverse to the
multiplication map µgi : R → R, r 7→ gir. Suppose (g1, g2, . . . , gs) is a regular se-
quence on M with s < d, and suppose m ∈ M with gs+1(m) ∈ (g1, g2, . . . , gs)M. Then
m = Ψs+1(gs+1m) ∈ (g1, g2, . . . , gs)M, proving that (g1, g2, . . . , gs+1) isM-regular as well.
Hence d = dim(RG/i) = dimK(V P ) ≤ depthRP (M).

Now let G be arbitrary, P a Sylow p-subgroup and iP := I ∩ RP with i = iP ∩ RG.
Moreover let E := EndK(R). Thus EndKH(R) = EH for every subgroup H ≤ G. Note
that the surjective relative transfer operator TrGP : EP → EG induces a splitting of EG-
modules EP = EG ⊕ C. Hence N := EP ⊗EGM is an EP -module, such that the restricted
EG-module hasM as a direct summand. Assume that g1, g2, . . . , gd are elements such that
the images g1, g2, . . . , gd form a homogeneous system of parameters in the quotient ring
RG/i. Since RP /iP is a finite extension of RG/i, these images also form a homogeneous
system of parameters in RP /iP , and therefore the originals form an N -regular sequence.
Since M is a direct summand of N|EG , the sequence (g1, g2, . . . , gd) is also M-regular.

Corollary 2.2. For every nonzero element α ∈ Hm(G,R) one has AnnRG(α) ≤ i.
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Proof. It is obvious from the definition of cohomology, that Hm(G,R) is a module over
EndKG(R). Let x ∈ RG \ i, then x is contained in a homogeneous system of parameters of
RG/i and therefore acts regularly on Hm(G,R). Hence x 6∈ AnnRG(α).

The following conceptual characterization of flatness in terms of the prime ideal i will
guide further investigation.

Theorem 2.3. Assume that m := ccG(R) < codimK(V P ) − 1. Then the following are
equivalent:

(a) RG is flat;

(b) The ideal i is an associated prime of the RG-module Hm(G,R);

(c) Hm(G,R) contains an RG-submodule of Krull dimension dimK(V P ).

If these conditions are satisfied then depthRG(Hm(G,R)) = dimK(V P ).

Proof. (a) ⇒ (b): From Theorem 7.1 we see that grade(i, RG) = m + 1 implies that
grade(i,Hm(G,R)) = 0, hence i consists of zero-divisors on Hm(G,R) and therefore lies
in some associated prime p := AnnRG(α) with α ∈ Hm(G,R) \ {0}. On the other hand,
Corollary 2.2 implies that AnnRG(α) ⊆ i. Hence i = p.
(b) ⇒ (c): Take the submodule generated by α.
(c) ⇒ (a): Let Y ≤ Hm(G,R) be an RG-submodule of Krull dimension dimK(V P ).
Then there is an associated prime p of Y such that the Krull dimensions of the mod-
ules RG/p, Y and RG/i coincide. Again Corollary 2.2 shows that p = i, which implies
that grade(i,Hm(G,R)) = 0. Hence grade(i, RG) = m + 1, by Theorem 7.1. If i is an
associated prime of Hm(G,R), then the RG-depth of this module is less than or equal to
dim RG/i = dimK(V P ) (see Bruns and Herzog [2, Proposition 1.2.13]). On the other hand
it follows from Kemper [10, Theorem 2.13]), or from Corollary 2.2, that this depth is also
greater than or equal to dimK(V P ).

While we are aware of a number of instances were the existence of a suitable positive
degree cohomology class provides a sufficient condition determining the depth of RG, we
believe that Theorem 2.3 is the first example of a theorem giving a condition on the positive
degree cohomology which is necessary as well as sufficient.

Suppose m := ccG(R) and α ∈ Hm(G,R) \ {0}. Then the variety in V associated to
AnnRG(α) is

V(α) := {x ∈ V | f(x) = 0 for all f ∈ AnnRG(α)}.

Similarly the variety in V associated to the prime ideal i = I ∩RG is

V(i) =
⋃
P ′

V P ′ , (5)

where the union runs through all Sylow p-subgroups P ′ ≤ G. The condition V(α) ⊆⋃
P ′ V

P ′ implies i ⊆
√

AnnRG(α) and therefore, by Corollary 2.2 , we have equality in both
inclusions. Using this we obtain the following geometric version of Theorem 2.3.

Theorem 2.4. Assume that m := ccG(R) < codimK(V P ) − 1 and α ∈ Hm(G,R) \ {0}.
Then the following are equivalent:

(a) V(α) ⊆ V(i);

(b) V(α) = V(i);
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(c)
√

AnnRG(α) = i.

Furthermore, RG is flat if and only if there exists α ∈ Hm(G,R) \ {0} satisfying (a), (b)
or (c).

Proof. Using Theorem 2.3 it suffices to note that
√

AnnRG(α) = i implies that i is an
associated prime of Hm(G,R). However this is a standard fact about Noetherian rings and
modules.

In order to apply Theorem 2.4 we need to find classes α ∈ Hm(G,R) \ {0} satisfying
V(α) ⊆ V(i) or, equivalently, i ⊆

√
AnnRG(α). By Lorenz and Pathak [12, Lemma 1.3],

elements in the image of the relative transfer, TrGH , annihilate cohomology classes in the
kernel of the restriction, resG,H , and, by Fleischmann [6, 12.5], i is the radical of a sum of
relative transfer ideals.

Recall that for a subgroup H ≤ G the relative transfer is the RG-module homomorphism
TrGH : RH → RG, r 7→

∑
g g(r), where g runs through a set of representatives of H-cosets

satisfying G = ] gH. This definition is independent of the choice of representatives and
the image TrGH(RH) is an ideal in RG. For any set χ of subgroups of G we define

iχ :=
∑
X∈χ

TrGX(RX) / RG.

This is a proper ideal of RG if and only if p divides all indices [G : X] for X ∈ χ.
The varieties of relative transfer ideals TrGH(RH) have been described in Fleischmann [6,
Theorem 12.4] and Lorenz and Pathak [12, Lemma 1.1]:

V(TrGH(RH)) = {v ∈ V | p | [Gv : Gv ∩ gH] for all g ∈ G} (6)

where gH := gHg−1. Note that, if p divides [G : H], then H does not contain a Sylow
p-subgroup of G and V(i) ⊆ V(TrGH(RH)). Therefore

√
iχ ⊆ i whenever

√
iχ $ RG.

Furthermore, i =
√

ip−prop, where “p-prop” denotes the set of all proper subgroups of
Sylow p-subgroups of G (see Fleischmann [6, 12.5] or Theorem 3.1 below). For a family χ
of subgroups of G, define

Kjχ := Kjχ(G) :=
⋂
X∈χ

ker
(
(resG,X)

∣∣
Hj(G,R)

)
and Kχ :=

⊕
j>1K

j
χ. The following lemma is an immediate consequence of Lorenz and

Pathak [12, Lemma 1.3].

Lemma 2.5. For each family χ of subgroups of G one has

iχ ⊆ AnnRG(Kχ).

This leads to the following criterion of flatness.

Theorem 2.6. For m = ccG(R) and χ a family of subgroups of G, if
√

iχ = i and Kmχ 6= 0,
then RG is flat.

Proof. Lemma 2.5 and Kmχ 6= 0 imply
√

iχ ⊆
√

AnnRG(α) ⊆ i. Using the first condition
gives

√
AnnRG(α) = i. Hence the hypothesis (c) of Theorem 2.4 holds.
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3 The Geometry of the Ideal i

In this section we use the geometry of i to investigate families of subgroups, χ, for which√
iχ = i. This is an important first step in the use of Theorem 2.6. Since TrGgH(R

gH) =
TrGH(RH) for every g ∈ G and TrGH(TrHU (RU )) = TrGU (RU ) for U ≤ H, the ideal

√
iχ does

not change if we adjoin to χ all subgroups of conjugates of X ∈ χ. Similarly Kχ does not
change either, hence we can, if we wish, assume that χ is closed under taking conjugates
and subgroups. Let χ′p denote the set of p-subgroups of G not in χ.

Theorem 3.1. If χ is closed under taking conjugates and subgroups, then

V(iχ) = {v ∈ V | p | [Gv : Gv ∩ X] for all X ∈ χ} =
⋃
Q∈χ′p

V Q.

Proof. The first equality follows from Equation (6) using

V(iχ) = V

∑
X∈χ

TrGX(RX)

 =
⋂
X∈χ
V
(
TrGX(RX)

)
.

We now prove the second equality. To show the first inclusion, suppose v ∈ V(iχ) and let
Pv denote a Sylow p-subgroup of the isotropy subgroup Gv. Since p divides [Gv : Gv ∩ X]
for all X ∈ χ, it is clear that Pv 6∈ χ. Thus v ∈ V Pv ⊆

⋃
Q∈χ′p V Q.

To show the reverse inclusion, let v ∈ V Q for some Q ∈ χ′p and assume, by way of
contradiction, that v 6∈ V(iχ). Then there exists H ∈ χ such that p does not divide
[Gv : Gv ∩H]. Thus H contains a Sylow p-subgroup of Gv, say Pv. Since χ is closed under
taking subgroups, Pv ∈ χ. However, Q is a p-subgroup of Gv. Therefore some conjugate
of Q is contained in Pv. Again, since χ is closed under conjugation and taking subgroups,
we arrive at the contradiction Q ∈ χ.

Corollary 3.2. For j ∈ {1, 2}, let χj be closed under conjugation and taking subgroups.
Then

V(iχ1) ⊆ V(iχ2)

if and only if the following holds:

For each p-group Q ∈ χ2 \ χ1 there exists S ∈ (χ2)′p, such that Q $ S and V Q = V S.

Proof. “⇒”: Suppose V(iχ1) ⊆ V(iχ2) and Q is a p-group in χ2\ χ1. Applying Theorem 3.1
gives V Q ⊆ V(iχ1). Thus V Q ⊆ V(iχ2). Hence for each v ∈ V Q, p divides [Gv : Gv ∩ Q]
and there is a Sylow p-subgroup of Gv, say Pv, with Q $ Pv. As v ∈ V(iχ2), using the
first equality of Theorem 3.1, we have Pv 6∈ χ2. Clearly for any v ∈ V we have V Pv ⊂ V Q.
Furthermore V Q ⊆

⋃
v∈V Q V

Pv . Thus, since the finite group G has only a finite number of
subgroups, V Q =

⋃
v∈S V

Pv for some finite S ⊆ V Q. Since K is algebraically closed and
therefore an infinite field, we conclude V Q = V Pv′ for some Q $ Pv′ ∈ (χ2)′p.
“⇐”: From Theorem 3.1,

V(iχ1) =
⋃

Q∈(χ1)′p

V Q.

However, (χ1)′p is the disjoint union of (χ1)′p∩(χ2)′p and (χ1)′p∩χ2. If Q ∈ (χ1)′p∩χ2, then by
hypothesis V Q = V S for some S ∈ (χ2)′p. Therefore, for any Q ∈ (χ1)′p, V

Q ⊆
⋃
S∈(χ2)′p

V S

and the result follows from Theorem 3.1.
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Lemma 3.3. Let P be a Sylow p-subgroup of G and let Q be a proper subgroup of P .
Define GV Q := {g ∈ G | gw = w ∀w ∈ V Q}. Then V P

$ V Q if and only if p | [G : GV Q ].

Proof. First observe that V P ⊆ V Q and Q ≤ GV Q .
Suppose p does not divide [G : GV Q ]. Then GV Q contains a Sylow p-subgroup of G, say

P ′. Thus V P ⊆ V Q ⊆ V P ′ . However, P and P ′ are conjugate so dim(V P ) = dim(V P ′).
Therefore V P = V Q.

Suppose p | [G : GV Q ]. Then P \GV Q is non-empty and there exists g ∈ P and v ∈ V Q

with gv 6= v. Therefore V P
$ V Q.

In the following we adopt the notation X ≤G H ( X <G H ) to mean gX ≤ H ≤ G
(gX < H ) for some g ∈ G.

Proposition 3.4. Let H1, H2, . . . , Hk ≤ G with p | [G : Hi] for all i and let P be a fixed
Sylow p-subgroup of G. Then the following are equivalent:

(a) i =
√

i{H1, H2, ... , Hk};

(b) ∀Q < P with V P
$ V Q: Q ≤G Hi for some i ∈ {1, . . . , k};

(c) ∀Q < P with p | [G : GV Q ]: Q ≤G Hi for some i ∈ {1, . . . , k}.

Proof. Let χ1 := {X ≤ G |∃ i ∈ {1, . . . , k} : X ≤G Hi} and χ2 := {Q ≤ G | Q <G P}.
From Theorem 3.1 and Equation (5) we see that V(iχ2) = V(i). From Theorem 3.1 and
Equation (6) we see that V(iχ1) = V

(
i{H1, H2, ... , Hk}

)
. Moreover, since all Hi’s have index

divisible by p, we know that V(i) ⊆ V(iχ1). From Corollary 3.2 and Lemma 3.3 we see, that
the reverse inclusion is equivalent to either one of (b) or (c). Now the statement follows
from Hilbert’s Nullstellensatz.

Remark 3.5.

(a) For any subgroup H ≤ G we have i =
√

iH if and only if every p-subgroup Q ≤ G
with p | [G : GV Q ] satisfies Q ≤G H. If H is a normal subgroup then this condition
is equivalent to the fact that H contains all p-elements g ∈ G such that p divides the
index [G : GV g ], where GV g is the pointwise stabilizer of the fixed point space of g.
In particular the subgroup M := 〈g ∈ G | g a p− element with p | [G : GV g ]〉 / G is
the unique minimal normal subgroup of G with i =

√
iM .

(b) Let P be a fixed Sylow p-subgroup of G. Without loss of generality, we can as-
sume that the subgroups H1,H2, . . . , Hk appearing in Proposition 3.4 are proper
subgroups of P . Indeed, by Mackey’s formula we have for each r ∈ RHi : TrGHi(r) =∑

g TrPP∩ gHi
(gr), where g runs through a system of representatives of double cosets

PgHi in G. Hence

[G : P ] TrGHi(r) = TrGP (TrGHi(r)) =
∑
g

TrGP∩ gHi(gr)

and we see that √
i{H1, H2, ... , Hk} =

√
i{P∩ gHi | g∈G}.

Example 3.6. Suppose that we are in the “mildly modular” case, i.e., p2 does not divide |G|.
Take a non-identity p-element g ∈ G. Then 〈g〉 ≤ G has order p and therefore is a Sylow
p-subgroup. But we certainly have 〈g〉 ≤ GV g , hence the index [G : GV g ] is not divisible
by p. Therefore, by Proposition 3.4, we can take χ = {1} in Theorem 2.6. Since the
restriction is non-injective , Kmχ 6= 0. Thus RG is flat and we have recovered Theorem 3.1
of Kemper [10]. /
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4 Restricting Cohomology

Our primary tool for identifying flat representations is Theorem 2.6. Proposition 3.4 allows
us to identify suitable families of subgroups. In this section we address the problem of
identifying a suitable non-zero cohomology class. It is convenient to assume that the
elements of χ = {H1, . . . , Hk} are proper subgroups of one Sylow p-subgroup, P , of G. We
can then attempt to determine the existence of α ∈ Kmχ \ {0} locally, i.e. on the level of P .
In principle this can be done, using the fact that the restriction map resG,P : H∗(G,R)→
H∗(P,R) is injective and its image consists of the stable cohomology

H∗(P,R)G−stab := {η ∈ H∗(P,R) | resP,P∩gPg−1(η) = res gP,P∩gPg−1(gη), g ∈ P\G/P},

where P\G/P denotes a system of P−P double coset representatives (see Benson [1, Propo-
sition 3.8.2] or Evens [5, Corollary 4.2.7]). Note also, that the transfer (or corestriction)
TrGP from Hm(P,R) to Hm(G,R) induces an isomorphism Hm(P,R)G−stab ∼= Hm(G,R).

Lemma 4.1. Let P be a Sylow p-subgroup of G with normalizer quotient N := NG(P )/P ,
let χ := {Q1, Q2, . . . , Qk} be a family of proper subgroups of P and let

χ̂ := χ ∪ {P ∩g P | g ∈ G \NG(P )}.

Then

Hm(P,R)N ∩ Kχ̂(P ) = Hm(P,R)G−stab ∩ Kχ̂(P ) ⊆ Hm(P,R)G−stab ∩ Kχ(P ) ∼= Kmχ (G),

where the last isomorphism is induced by transfer and restriction.

Proof. Since Hm(P,R)G−stab ∼= Hm(G,R) and G acts trivially on Hm(G,R), we have
Hm(P,R)G−stab ⊆ Hm(P,R)N and Hm(P,R)G−stab ∩Kχ̂(P ) ⊆ Hm(P,R)N ∩Kχ̂(P ). Sup-
pose η ∈ Hm(P,R)N ∩ Kχ̂(P ) and g ∈ G. If g ∈ NG(P ) then the stability condition
becomes η = gη and is satisfied because η ∈ Hm(P,R)N . If g ∈ G \ NG(P ), then, since
η ∈ Kχ̂(P ), we have resP,P∩gPg−1(η) = 0 and res gP,P∩gPg−1(gη) = g(resP,g−1Pg∩P (η)) =
0. Thus again the stability condition is satisfied. Therefore η ∈ Hm(P,R)G−stab and
Hm(P,R)N ∩ Kχ̂(P ) = Hm(P,R)G−stab ∩ Kχ̂(P ).

Since χ ⊂ χ̂, we have Kχ̂(P ) ⊆ Kχ(P ). Therefore

Hm(P,R)G−stab ∩ Kχ̂(P ) ⊆ Hm(P,R)G−stab ∩ Kχ(P ).

Suppose ρ ∈ Hm(P,R)G−stab ∩ Kχ(P ). Using the Mackey formula in cohomology (see
Benson [1, Proposition 3.6.16]), we get

resG,Qi
(
TrGP (ρ)

)
=

∑
g∈Qi\G/P

TrQiQi∩ gP (res gP,Qi∩ gP (gρ)) = 0,

because

res gP,Qi∩ gP (gρ) = resP∩ gP,Qi∩ gP (res gP,P∩ gP (gρ))
= resP∩ gP,Qi∩ gP (resP,P∩ gP (ρ))
= resP,Qi∩ gP (ρ) = 0.

The fact that resG,P mapsKmχ (G) ontoHm(P,R)G−stab∩Kχ(P ) follows from the transitivity
of restriction.

We now describe a way to construct suitable N -stable elements in Hm(P,R)N ∩Kχ̂(P ),
whenever the restricted P -module R|P contains a suitable direct summand of ‘induced
type’.
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Lemma 4.2. Keep the notation from Lemma 4.1 and let W be a KP -module. Suppose
that τ ∈ Hm(P,W ) \ {0} with resP,X(τ) = 0 for all proper subgroups X < P . Assume that
the restricted KP -module R|P has a direct summand, isomorphic to the restricted induced
module

(
W ↑NG(P )

)
|P . Then there exists a stable element ρ ∈ Hm(P,R)N ∩ Kχ̂(P ) \ {0}.

Proof. Let i and j denote the embeddings of the direct summands

Hm(P,W ) ↪→ Hm(P,W ↑NG(P )|P ) and Hm(P,W ↑NG(P )|P ) ↪→ Hm(P,R),

respectively and define ρ := j ◦ resNG(P ),P ◦ TrNG(P )
P ◦i(τ). Note that the map

TrNG(P )
P ◦i : Hm(P,W )→ Hm(NG(P ),W ↑NG(P ))

is an isomorphism, due to the Eckmann-Shapiro lemma. Since NG(P )/P has order prime
to p, the restriction

resNG(P ),P : Hm(NG(P ),W ↑NG(P ))→ Hm(P,W ↑NG(P ))N

is an isomorphism (see Evens [5, Exercise 7.2.3. pg 77]) and j in injective. This shows that
ρ lies in Hm(P,R)N and is non-zero. Moreover

resP,X(ρ) = resNG(P ),X TrNG(P )
P (i(τ)) =

∑
n∈N

resP,X(nτ)

=
∑
n∈N

n(res
P, n−1X

(τ)) = 0.

Thus ρ ∈ Hm(P,R)N ∩ Kχ̂(P ) \ {0}.

Proposition 4.3. Let P be a Sylow p-subgroup of G, let m = ccG(R), and let W be a
KP -module. Suppose that τ ∈ Hm(P,W ) \ {0} with resP,X(τ) = 0 for all proper subgroups
X < P . Suppose that the restricted KP -module R|P has a direct summand isomorphic to
the restricted induced module

(
W ↑NG(P )

)
|P . Then RG is flat.

Proof. Take χ to be the set of all proper subgroups of P . Then by Proposition 3.4, the
first condition in Theorem 2.6 is satisfied. The second condition follows from Lemma 4.2
and Lemma 4.1.

5 Cyclic Sylow p-subgroups

In this section we apply our techniques to groups with cyclic Sylow p-subgroup. We start
by recording two known facts about group cohomology:

Theorem 5.1. Let P = 〈σ〉 be a cyclic group of order z, let α ∈ Aut(P ) be an automor-
phism and let M be a P >C〈α〉-module. Then

H i(P,M) =

{
MP /TrP (M) if i > 0 is even,
ker(TrP |M )/(σ − 1)M if i is odd,

and the induced (right) action of α on H∗(P,M) is given by ρα = α−1(ki · ρ), where
α(σ) = σk with gcd(k, z) = 1 and deg(ρ) ∈ {2i, 2i− 1}.

Proof. See Evens [5, p. 6].
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Theorem 5.2. Let G be any group and K a field of characteristic p. Then

H1(G,K) ∼= Hom(G,Z/p)⊗Fp K,

where Fp denotes the prime field of characteristic p. In particular H1(G,K) 6= 0 if and
only if G has a normal subgroup of index p.

Proof. See Landrock [11, Corollary 10.13].

Throughout the rest of this section we assume that P is a cyclic Sylow p-subgroup of
G. We will use N to denote the normalizer quotient NG(P )/P . Recall that a finite group
G is called p-nilpotent if G has a normal subgroup H of order not divisible by p such that
G/H is a p-group.

Theorem 5.3. Let G be a finite group with cyclic Sylow p-subgroup P . Then the following
are equivalent:

(a) H1(G,K) 6= 0;

(b) G is p-nilpotent;

(c) NG(P ) = CG(P ).

If G acts linearly on a finite-dimensional vector space V over a field K of characteristic p
and one of (a), (b) or (c) holds, then RG is flat and

depth
(
RG
)

= min
{

dimK(V P ) + 2,dimK(V )
}
. (7)

Proof. By Theorem 5.2, (a) implies that there is M / G with G/M of order p. Therefore
M ∩P = Φ(P ), the Frattini group of P and M is p-nilpotent by Huppert [8, Chap IV, 4.7].
Hence M = (M ∩ P ) ·H with normal p′-subgroup H, which in fact is characteristic in M
and hence normal in G. It follows that G = P · H is p-nilpotent. On the other hand, if
G = P ·H is p-nilpotent, then G/H ∼= P has a factor group of order p, hence H1(G,K) 6= 0,
by Theorem 5.2. So (a) and (b) are equivalent.
“(b) ⇒ (c)”: Let G = P ·H with normal p′-complement H. Then NG(P ) = PNH(P ) =
P ×NH(P ) = P × CH(P ) = CG(P ).
“(c)⇒ (a)”: This implication is Burnside’s theorem (see Huppert [8, Chap IV, 2.6]), which
is valid for abelian P .

Suppose that G is p-nilpotent. We apply Lemma 4.1 with χ̂ = χ = {Φ(P )} and
m = 1. Notice that 0 6= H1(G,K) ↪→ H1(G,R), where the embedding is induced from the
embedding K ↪→ R = K ⊕ R+. From the Lyndon-Hochschild-Serre spectral sequence we
get the exact sequence

0→ K ∼= H1(P/Φ(P ),K)→ H1(P,K)→ H1(Φ(P ),K)P/Φ(P ),

where the first map is inflation and the second one is restriction. Let η denote a non-zero
element of H1(P/Φ(P ),K). Since NG(P ) = CG(P ), the element ρ := inf(η) ∈ H1(P,K) \
{0} is NG(P )/P -stable. Furthermore resP,Φ(P )(ρ) = 0. Thus, by Lemma 4.1, the image of
ρ is a non-zero element in K1

χ. Clearly χ satisfies condition (b) of Proposition 3.4. Thus
an application of Theorem 2.6 finishes the proof.

Remark 5.4.
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(a) There are few examples in the literature where purely group theoretic properties of G
allow the computation of the depth of the ring of invariants. The first such instance
is the result of Ellingsrud and Skjelbred [4], who showed that (7) holds if G is a cyclic
p-group. This was extended by Campbell et al. [3] to the case where G is abelian and
has a cyclic Sylow p-subgroup (see Theorems 1 and 9 in [3]). Corollary 5.3 clearly
generalizes this latter result.

(b) A pair (G,V ) of a finite group G and a finitely generated KG-module V was called
“flat” by Kemper [10] if (7) holds, or in our notation here, if ccG(R) = 1 and RG is
flat. Thus we have proved that for a p-nilpotent group with cyclic Sylow p-subgroup,
(G,V ) is flat for every representation V in characteristic p.

(c) For p = 2, condition (c) from Theorem 5.3 is always satisfied, since CG(H) contains
P and therefore NG(H)/CG(H) has odd order, but on the other hand Aut(H) is a
2-group since H is a cyclic 2-group. Thus for p = 2 we can omit the condition of
p-nilpotency in Theorem 5.3. /

If G is not p-nilpotent but P is cyclic, we can use Lemma 4.1 and Proposition 3.4 to
obtain the following.

Proposition 5.5. Let Q := Φ(P ) be the maximal subgroup of P and m := ccG(R). Assume
that there is non-zero ρ ∈ Hm(P,R)N with resP,Q(ρ) = 0. Then RG is flat.

Corollary 5.6. Suppose W is a KP -module such that there exists ρ ∈ H1(P,W ∗) \ {0}
with resP,Q(ρ) = 0. Then the invariant ring with respect to the induced module V := W ↑G

is flat with:

depth
(
S(V ∗)G

)
= min

{
dimK(V P ) + 2,dimK(V )

}
.

Proof. Note that V ∗ ∼= W ∗↑G, so (W ∗↑NG(P ))|P is a summand of the module R|P . Hence
the claim follows from Proposition 4.3.

Alternatively we can use Proposition 5.5 and the following explicit construction of a
suitable element in H1(P,W ∗↑NG(P ))N : For each n ∈ N define kn ∈ (Z/p)∗ by nσ = σkn .
Then η :=

∑
n∈N n⊗kn ·ρ ∈ H1(P,W ∗↑NG(P ))N , which is embedded in H1(P, V ∗)N . Since

resP,Q(η) =
∑

n∈N n ⊗ kn · resP,Q(ρ) = 0, we see from Lemma 4.1, that m = ccG(R) = 1
and the result follows from Proposition 5.5.

Example 5.7. Let G be the finite simple group SL2(8) and p = 3. Then |G| = 7 · 8 · 9, the
Sylow 3-group P is cyclic with P ∩ gP = 1 for each g 6∈ N and NG(P ) is dihedral of order
18. Let V be the permutation module V := (K↓P )↑G. Then V↓P ∼= K(2) ⊕K[P ](6). Hence
dimK(V P ) = 8 and

depth
(
S(V ∗)G

)
= min

{
dimK(V P ) + 2,dimK(V )

}
= 10 < dimK(V ) = 56.

/

6 Further Applications

The purpose of this section is to provide several examples where RG is flat and P is
non-cyclic. Throughout we take χ to be the set of all proper subgroups of P . Thus, by
Proposition 3.4, the first condition of Theorem 2.6 is satisfied.
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Proposition 6.1. Suppose that W is P -module and there exists ρ ∈ H1(P,W )\{0} which
restricts to zero in H1(M,W ) for all maximal subgroups M ≤ P .
(a) If W is P -module summand of R, then RP is flat.
(b) If W ↑G is a summand of R, then RG is flat and ccG(R) = 1.

Proof. Part (a) follows immediately from Theorem 2.6 and part (b) is a consequence of
Proposition 4.3.

Suppose that W is a P -module. In order to apply the proposition, we need to identify
non-zero elements in H1(P,W ) which restrict to zero for all maximal subgroups. Let N
and M denote maximal subgroups of P . Note that N and M are normal in P . The infla-
tion map gives an injection from H1(P/N,WN ) to H1(P,W ) (see, for example, Evens [5,
Corollary 7.2.3]). Note that P/N is isomorphic to the cyclic group of order p and WN is a
vector space over a field of characteristic p. Thus, unless WN is a projective P/N -module,
H1(P/N,WN ) is non-zero. Elements in H1(P/N,WN ) can be represented by vectors in
WN which are in the kernel of the transfer (see Theorem 5.1). Assume WN is not projec-
tive and choose u ∈ WN so that the equivalence class, {u}, is non-zero in H1(P/N,WN ).
Clearly the image of {u} under the inflation map restricts to zero in H1(N,W ). We will
formulate a necessary and sufficient condition for the inflation of {u} to restrict to zero in
H1(M,W ). Note that M/(M ∩N) is also isomorphic to the cyclic group of order p so that
elements of H1(M/(M ∩N),WM∩N ) can be represented by vectors in WM∩N .

Lemma 6.2. Suppose that u ∈WN represents a non-zero element, {u}, in H1(P/N,WN ).
Then the image of {u} in H1(M,W ), under the composition of inflation followed by re-
striction, is zero if and only if u represents zero in H1

(
M/(M ∩N),WM∩N).

Proof. The inflation map is induced by the group epimorphism P → P/N and the KP -
module monomorphism WN →W . The group epimorphism factors as P → P/(M ∩N)→
P/N while the KP -module monomorphism factors as WN → WM∩N → W . Thus the
inflation map factors as H1(P/N,WN ) → H1(P/(M ∩ N),WM∩N ) → H1(P,W ). The
composition H1(P/(M ∩N),WM∩N )→ H1(P,W )→ H1(M,W ) is induced by the group
homomorphism M → P → P/(M ∩N) and the KP -module monomorphism WM∩N →W .
The group homomorphism also factors as M →M/(M ∩N)→ P/(M ∩N) giving a second
factorisation H1(P/(M ∩ N),WM∩N ) → H1(M/(M ∩ N),WM∩N ) → H1(M,W ). Thus
the following diagram commutes:

H1(P/N,WN ) −→ H1(P,W ) −→ H1(M,W )
↘ ↑ ↑

H1
(
P/(M ∩N),WM∩N) −→ H1

(
M/(M ∩N),WM∩N) .

Since the inflation map H1(M/(M ∩N),WM∩N )→ H1(M,W ) is injective , the kernel of
H1(P/N,WN )→ H1(M,W ) coincides with the kernel of the map from H1(P/N,WN ) to
H1(M/

(
M ∩N),WM∩N). This map takes the element represented by u in H1(P/N,WN )

to the element represented by u in H1(M/
(
M ∩N),WM∩N).

Suppose that P/P ′ is an elementary abelian p-group. Choose α ∈ P \ P ′. Then there
is a maximal subgroup of P , say N , such that P/N = 〈αN〉. Since P/P ′ is an elementary
abelian p-group, we have P/P ′ = 〈αP ′〉 ×N/P ′. If M is a second maximal subgroup of P ,
then there exists γ ∈ N such that αγ ∈M . Since M/M ∩N is isomorphic to Z/p, we have
M/M ∩N = 〈αγM ∩N〉. Define α := αP ′ and γ := γP ′. To apply our technique, we need
to find a u ∈WN which represents a non-zero class in H1(〈α〉,WN ) and represents the zero
class in H1(〈α · γ〉,WM∩N ) for all M and corresponding γ. If P/P ′ is a rank 2 elementary
abelian p-group, then M ∩N = P ′ and γ = βi for a fixed β with i = 0, . . . , p− 1.
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Example 6.3. Suppose P/P ′ is a rank 2 elementary abelian p-group. Choose ω ∈ Fq \ Fp

and let U be a two dimensional vector space over Fq with the action of P/P ′ given by

α =
(

1 ω
0 1

)
and β =

(
1 1
0 1

)
.

Take WP ′ to be S`(U) with ` < p. Then WP ′ is an ` + 1 dimensional indecomposable
representation of 〈αβi〉 ∼= Z/p and WN is the one dimensional fixed point space. Thus any
non-zero element of WN represents a non-zero class in H1(〈α〉,WN ) which maps to zero
in H1(〈αβi〉,WP ′).

Various choices for P and W give rise to this action of P/P ′ on WP ′ :
(i) W = WP ′ and P ′ = 1. Then P ∼= Z/p × Z/p. If we take G = GL2(Fp2) and
V ∗ = W ↑G then, by Proposition 6.1(b), RG is flat with ccG(R) = 1. Thus dim(RG) =
(`+ 1)(p4 − 1)(p2 − 1) and depth(RG) = 3.
(ii) Take ` = 1 and consider the action on W determined by

α =

 1 ω 0
0 1 0
0 0 1

 and β =

 1 1 0
0 1 1
0 0 1

 .

In this case, as long as p > 2, P ∼= (Z/p× Z/p) >CZ/p.
(a) Take V ∗ to be the direct sum of W and a two dimensional vector space on which β acts
trivially and α acts non-trivially, then the action of P on V is generated by bireflections,
the dimension of S(V ∗) is 5 and the depth of S(V ∗)P is 4.
(b) Take G to be GL3(Fp) and take V ∗ = W ↑G. Then by Proposition 6.1, RG is flat with
ccG(R) = 1. Therefore dim(RG) = 3(p3 − 1)(p2 − 1)(p− 1) and depth(RG) = 3. /

Example 6.4. Again suppose P/P ′ is a rank 2 elementary abelian p-group. Take p > 2 and
consider the action of P/P ′ on WP ′ given by

α =

 1 1 0
0 1 1
0 0 1

 and β =

 1 0 1
0 1 0
0 0 1

 .

Then WP ′ is a three dimensional indecomposable representation of 〈αβi〉 and WN is the
one dimensional fixed point space. Various choices for P and W give rise to this action of
P/P ′ on WP ′ :
(i) W = WP ′ and P ′ = 1. Then P ∼= Z/p× Z/p.
(a) If we take G = GL2(Fp2) and V ∗ = W ↑G then, by Proposition 6.1(b), RG is flat with
ccG(R) = 1. Thus dim(RG) = 3(p4 − 1)(p2 − 1) and depth(RG) = 3.
(b) Take V ∗ to be the direct sum of W and a two dimensional vector space on which α acts
trivially and β acts non-trivially, then the action of P on V is generated by bireflections,
the dimension of S(V ∗) is 5 and the depth of S(V ∗)P is 4.
(ii) Consider the action on W determined by

α =


1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 and β =


1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

In this case P ∼= (Z/p× Z/p) >CZ/p.
(a) Take V ∗ to be the direct sum of W and a two dimensional vector space on which α
acts trivially and β acts non-trivially, then the dimension of S(V ∗) is 6 and the depth of
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S(V ∗)P is 4.
(b) Take G to be GL3(Fp) and take V ∗ = W ↑G. Then by Proposition 6.1, RG is flat with
ccG(R) = 1. Therefore dim(RG) = 4(p3 − 1)(p2 − 1)(p− 1) and depth(RG) = 3.
(iii) Consider the action on W determined by

α =


1 1 0 0
0 1 1 0
0 0 1 0
0 0 0 1

 and β =


1 0 1 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

In this case, if p > 2, P is a group of order p4. The action of P on V is generated by
bireflections, the dimension of S(V ∗) is 4 and the depth of S(V ∗)P is 3. /

7 A Spectral Sequence

The purpose of this section is to prove Theorem 7.1 which is used in the proof of Theo-
rem 2.3. Our proof relies on a spectral sequence analogous to the one used by Ellingsrud
and Skjelbred [4]. For convenience and completeness, we include a development of the
spectral sequence.

Let A be a commutative K-algebra and G a group acting on A via algebra auto-
morphisms. Then A is a KG-module. Furthermore, for each KG-module N and each
AG-module M , the group HomKG(N,M) is an AG-module with (a · α)(x) = a · (α(x)) for
a ∈ AG and α ∈ HomKG(N,M).

Let H : KG − mod → AG − mod be a contravariant left exact functor. Suppose S
is an AG-module and N is a KG-module. We choose a projective resolution of S as an
AG-module,

P ∗ = · · ·P 2 → P 1 → P 0 → S → 0,

and a free resolution of N as a KG-module,

B∗ = · · ·B2 → B1 → B0 → N → 0.

Then we obtain a canonical first quadrant double complex

F i,j := HomAG(P i,H(Bj)).

Attached to this double complex are two spectral sequences. The first is constructed
using the ‘horizontal filtration’ and satisfies

horE
p,q
1 = Hq(HomAG(P ∗,H(Bp))) ∼= Extq

AG
(S,H(Bp)),

while the second is constructed using the ‘vertical filtration’ and satisfies

verE
p,q
1 = Hq(HomAG(P p,H(B∗))) ∼= HomAG(P p,RqH(N))

where RqH denotes the q-th right derived functor of H. It is now straightforward to see
that

verE
p,q
2
∼= Extp

AG
(S,RqH(N)).

From elementary properties of first quadrant double complexes, it is clear that both spectral
sequences converge to the graded cohomology of the total complex, where the gradings are
defined using the horizontal or vertical filtration, respectively. Furthermore, for each of
these spectral sequences the rth differential has bidegree (r, 1− r).
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We want to apply this in the situation where S := AG/I for an ideal I E AG, N ∼= K,
the trivial KG-module, and H(X) := HomKG(X,A), the contravariant Hom-functor. Thus
H(Bj) = HomKG(Bj , A) ∼= Amj where mj is the rank of the free KG-module Bj . Therefore

horE
p,q
1
∼= Extq

AG
(AG/I,Amp);

verE
p,q
2
∼= Extp

AG
(AG/I,ExtqKG(K,A));

verE
p,0
2
∼= Extp

AG
(AG/I,AG).

Assume that h := grade(I, A) is finite. (For example, if A is a Cohen-Macaulay ring,
and G is finite then h is the height of I.) Then for all q < h we have horE

p,q
1 = 0 and hence

horE
p,q
∞ = 0. Using the horizontal filtration F of the total complex T := tot(F i,j) and the

convergence
horEp,qr ⇒ horEp,q∞ ∼= Fp(Hp+q(T ))/Fp+1(Hp+q(T ))

we get for every n = p+ q < h:

0 = Fn+1(Hn(T )) = Fn(Hn(T )) = Fn−1(Hn(T )) = · · · = F0(Hn(T )) = Hn(T ).

Therefore verE
p,q
∞ = 0 for p+ q < h.

Theorem 7.1. Let m denote the cohomological connectivity ccG(R). Suppose that I is a
prime ideal in RG and m+ 1 is less than the height, h, of I. Then grade(I,Hm(G,R)) = 0
if and only if grade(I,RG) = m+ 1.

Proof. We use the spectral sequence verE
p,q
∗ from the preceding discussion. Since R is

Cohen-Macaulay, grade(I,R) = h. Therefore verE
p,q
∞ = 0 for p + q < h. In particular,

verE
0,m
∞ = 0. Furthermore, since H i(G,R) = 0 for 0 < i < m, we have verE

p,q
2 = 0 for

0 < q < m.
Suppose grade(I,Hm(G,R)) = 0. Then verE

0,m
2 = Ext0

RG(RG/I,Hm(G,R)) 6= 0. Sup-
pose α ∈ verE

0,m
2 \ {0}. Since verE

0,m
∞ = 0 and the spectral sequence is first quadrant,

there is a differential dr such that dr(α) 6= 0. However, verE
p,q
2 = 0 for 0 < q < m. Thus

r = m+1 and, since dm has bidegree (m, 1−m), we conclude verE
m+1,0
2 6= 0. Furthermore,

grade(I,RG) is the smallest p such that verE
p,0
2 6= 0. Thus grade(I,RG) ≤ m+ 1. However

any non-zero element of verE
p,0
2 for p < m + 1 would survive the spectral sequence giving

a non-zero element in verE
p,0
∞ . Therefore grade(I,RG) = m+ 1.

Suppose grade(I,Hm(G,R)) > 0. Then verE
0,m
2 = Ext0

RG(RG/I,Hm(G,R)) = 0. Thus
any non-zero element of verE

p,0
2 for p ≤ m + 1 < h would survive the spectral sequence

giving a non-zero element in verE
p,0
∞ . Thus grade(I,RG) > m+ 1.
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Invariant Rings, in: P. Dräxler, G.O. Michler, C. M. Ringel, eds., Computational
Methods for Representations of Groups and Algebras, Euroconference in Essen, April
1-5 1997, Progress in Mathematics 173, Birkhäuser, Basel 1999.
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