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Abstract

Let G be a linear algebraic group over a field K of characteristic 0. An integer m is called
a global degree bound for G if for every linear representation V the invariant ring K[V ]G is
generated by invariants of degree at most m. We prove that if G has a global degree bound,
then G must be finite. The converse is well known from Noether’s degree bound.

Introduction

A classical topic in invariant theory is the question of degree bounds: Is it possible to generate an
invariant ring K[V ]G by homogeneous invariants of degree at most m, and can any a priori upper
bound for such a number m be given? Perhaps the most prominent example of such a bound is
Noether’s degree bound [8], which states that for G finite and K of characteristic 0, every invariant
ring is generated in degree at most |G|. Upper bounds for linearly reductive groups were given by
Popov [9, 10] and then improved by Derksen [2]. It is remarkable that these bounds, in contrast
to Noether’s bound, do not only depend on G, but also involve properties of the representation V ,
such as its dimension. The same is true for an a priori bound given by Derksen and Kemper [3,
Theorem 3.9.11] for finite groups (where the characteristic of K may divide |G|).

This observation leads to the following question. If G is infinite does there exist any upper
bound at all which only depends on G and not on the representation? In this note we answer this
question for the case that char(K) = 0. The answer is as expected from observations: A global
bound only exists if G is finite. This is stated in Theorem 2.1.

In the first section we establish the result for the case that G is linearly reductive. The second
section deals with the general case of a linear algebraic group over an algebraically closed field of
characteristic 0.

Let us fix some notation. Throughout the paper, G is a linear algebraic group over an alge-
braically closed field K. By a G-module we mean a finite-dimensional vector space V over K with
a linear action of G given by a morphism G × V → V of varieties. Recall that there always exists
a faithful G-module (see Borel [1, Proposition I.1.10]). If V is a G-module, then G also acts on
the polynomial ring K[V ] on V , and the invariant ring is denoted by K[V ]G. The ring K[V ]G is a
graded algebra.

If A is any graded algebra over K = A0, we write

β(A) = min{d ∈ N | A is generated by elements of degree ≤ d},

where by convention the minimum over an empty set is ∞. Moreover, define

β(G) := sup
{
β
(
K[V ]G

)
| V G-module

}
∈ N ∪ {∞}.

We say that G has a global degree bound if β(G) <∞, i.e., there exists an integer m such that
β
(
K[V ]G

)
≤ m for all G-modules V .
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1 Linearly reductive groups

If G is linearly reductive, then K[V ] has a unique isotypical decomposition, i.e.,

K[V ] =
⊕
λ∈Λ

K[V ]λ, (1.1)

where Λ is the set of all isomorphism classes of irreducible G-modules and K[V ]λ is a direct sum of
irreducible modules which lie in the class λ (see Springer [14]).

Lemma 1.1. Suppose that G is linearly reductive and V is a faithful G-module. Assume that only
finitely many components appear in the isotypical decomposition (1.1) of K[V ], i.e.,

|{λ ∈ Λ | K[V ]λ 6= 0}| <∞.

Then |G| <∞.

Proof. For every λ, K[V ]λ is a finitely generated module overK[V ]G (see Springer [14, III, Satz 4.2]).
If there are only finitely many λ such that K[V ]λ 6= 0, then K[V ] is a finitely generated K[V ]G-
module. Let K(V ) be the quotient field of K[V ]. The field of invariant rational functions K(V )G

contains the quotient field of K[V ]G. It follows that K(V ) : K(V )G is an algebraic extension. Since
G acts faithfully, it follows from Galois theory that G must be finite.

Proposition 1.2. Let G be linearly reductive and infinite. Then G has no global degree bound.

Proof. Let U be a faithful G-module, and let k be an arbitrary non-negative integer. We write
K[U ]i for the homogeneous part of degree i of the polynomial ring. By Lemma 1.1 there exists
an isomorphism class λ of irreducible G-modules such that K[U ]λ 6= 0 but (K[U ]i)λ = 0 for
all i < k. Let m be the least integer with (K[U ]m)λ 6= 0. Choose a representative W from λ
and set V = W ⊕ U . Then K[V ] = K[W ] ⊗K K[U ] has a G-invariant bigrading by putting
K[V ]i,j = K[W ]i ⊗K[U ]j . For the part of bidegree (1, j) we have

K[V ]G1,j = (W ∗ ⊗K[U ]j)
G ∼= HomG (W,K[U ]j) .

Hence K[V ]G1,j = 0 for j < m, and there exists an f ∈ K[V ]G1,m \{0}. The total degree of f is m+1,
and by using the bigrading we see that f cannot be written as a polynomial in invariants of smaller
total degree. Hence

β
(
K[V ]G

)
≥ m+ 1 > k.

Since k was chosen arbitrarily, there exists no global bound.

2 The general case

Let G be a linear algebraic group. It is obvious but noteworthy that for a closed normal subgroup
N EG we have

β(G/N) ≤ β(G). (2.1)

We will also use a result of Schmid [12, Proposition 5.1] which states that if H ≤ G is a subgroup
of finite index, then

β(H) ≤ β(G). (2.2)

Schmid only states this result for finite groups, but the proof (which works by inducing representa-
tions from H to G) only uses that the index is finite.

We can now prove the main result.
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Theorem 2.1. Let G be a linear algebraic group over an algebraically closed field K of character-
istic 0. Then G has a global degree bound if and only if it is finite.

Proof. If G is finite, then the Noether bound [8] says β(G) ≤ |G|.
On the other hand, assume that G is infinite. Let U E G be the unipotent radical. G/U is

reductive and therefore linearly reductive (this uses char(K) = 0, see Springer [14, V, Satz 1.1]).
If G/U is infinite, then the result follows from Proposition 1.2 and the inequality (2.1). If, on
the other hand, G/U is finite, then by (2.2) it suffices to prove that β(U) = ∞. It follows from
Humphreys [6, Corollary 17.5, Proposition 17.4, and Lemma 15.1C] that U has a closed normal
subgroup N such that U/N is isomorphic to the additive group Ga. By (2.1) we are reduced to
showing that β(Ga) =∞. This is done in the following lemma.

Lemma 2.2. If G = Ga is the additive group over an algebraically closed field K of characteristic 0,
then β(G) =∞.

Proof. We use Roberts’ isomorphism. This states that for an SL2-module V (on which Ga acts by
the matrices ( 1 t

0 1 )) we have an isomorphism

Φ: (K[U ]⊗K K[V ])SL2 ∼−→ K[V ]Ga , (2.3)

where U is the natural 2-dimensional SL2-module. A good reference for (2.3) is Kraft [7, page 191]
(where a more general situation is considered) for the case K = C, and Seshadri [13] for general
K. The isomorphism is given by Φ (

∑
i fi ⊗ gi) =

∑
i fi(v)gi with v = ( 1

0 ) ∈ U . We have a natural
bigrading on (K[U ]⊗K[V ])SL2 , and if f ∈ (K[U ]⊗K[V ])SL2 has bidegree (i, j), then Φ(f) is
homogeneous of degree j. Also consider the epimorphism

K[U ]⊗K[V ]� K[V ],
∑
i

fi ⊗ gi 7→
∑
i

fi(0)gi.

Since SL2 is linearly reductive, this restricts to an epimorphism

π: (K[U ]⊗K[V ])SL2 � K[V ]SL2 .

If f ∈ (K[U ]⊗K[V ])SL2 has bidegree (i, j), then π(f) has degree j.
Now let V be an SL2-module and set k := β

(
K[V ]Ga

)
. We can take preimages under Φ of

homogeneous generating invariants for K[V ]Ga and decompose them into their bi-homogeneous
parts. It follows that (K[U ]⊗K[V ])SL2 is generated by bi-homogeneous invariants of degrees (i, j)
with j ≤ k. By applying π we obtain that K[V ]SL2 is generated by homogeneous invariants of
degree at most k, so β

(
K[V ]SL2

)
≤ k. This argument shows that

β(SL2) ≤ β(Ga).

But β(SL2) =∞ by Proposition 1.2. This finishes the proof.

Unfortunately, we were unable to extend this or a similar result to positive characteristic. We
conjecture the following.

Conjecture 2.3. Let G be a linear algebraic group over an algebraically closed field K. Then the
following are equivalent:

(a) G has a global degree bound.

(b) G is finite and char(K) does not divide the group order |G|.

The implication “(b) ⇒ (a)” is given by the Noether bound, which was recently proved to hold
also if char(K) < |G| but char(K) - |G| independently by Fleischmann [4] and Fogarty [5]. It is also
known from Richman [11] that a finite group with |G| divisible by char(K) does not have a global
degree bound. Both results can also be found in the book by Derksen and Kemper [3].
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