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Abstract. Let G be a finite group acting on a polynomial ring A over the field
K and let AG denote the corresponding ring of invariants. We prove that the
field of invariants Quot(AG) is generated in degree less or equal to the group
order |G|. This is not true in general for the ring AG, if the characteristic
of K divides |G|. We also study various localizations and homomorphisms of
modular invariant rings as tools to construct generators for AG. We prove
that there is always a nonzero transfer c ∈ AG of degree < |G|, such that the
localization (AG)c can be generated by fractions of homogeneous invariants of
degrees less than 2 · |G|−1. If A = Sym(V ⊕FG) with finite dimensional FG -
module V , then c can be chosen in degree one and 2 · |G|−1 can be replaced by
|G|. Let N denote the image of the classical Noether - homomorphism (see the
definition in the paper). We prove that N contains the transfer ideal and thus
can be used to calculate generators for AG by standard elimination techniques
using Groebner - bases. This provides a new construction algorithm for AG.

1. Introduction

Let K be a field and G be a finite group acting linearly on the polynomial ring
A := K[X1, · · · , Xn]. It is a classical result of Emmy Noether that the ring of
invariants AG := {f ∈ A | g(f) = f ∀g ∈ G} is a finitely generated algebra. If K
has characteristic zero or p > 0 not dividing the group order |G|, then it is known
that AG can be generated by invariants of degree less or equal to |G| (see [12],
[10], [7]), which is called the Noether - bound for the degrees of generators
of AG. If K has characteristic p > 0 dividing |G|, then in general the Noether
bound does not hold ([15]), however, as we show in Section 2 below, it still holds
for the field of invariants Quot(AG).
This result is the starting point for a further investigation of degree bounds for
various localizations of AG, which will lead to a proof of the fact that there always
exists a nonzero invariant c ∈ AG of degree less than |G|, such that the localiza-
tion AG

c is generated in degree less or equal to 2|G| − 1. This is remarkable in
the light of the fact that for the ring AG one cannot expected a degree bound
depending only on the group order |G| (see [15]).
However, the main motivation for studying these localizations of AG is derived
from the following observation: Let B ≤ AG be a “constructible” subalgebra
which happens to have the same quotient field as AG. If moreover AG is a finite
B - module, then we are almost “one step short” of constructing AG itself. In-
deed, in this situation there exists a non zero “conductor - element” c ∈ B such
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that cAG ⊆ B hence AG = c−1(cA ∩ B) (see 3.3, 3.5). As we will see in 3.6 and
3.7, the required computations that lead to a set of algebra generators for AG

can be performed by standard elimination techniques using Groebner - bases, as
described for example in [5] or [1].
The paper is organized as follows:
In Section 2 we introduce some notation and prove the Noether bound for fields
of invariants in arbitrary characteristic. In Section 3, we introduce the concept
of the conductor to a subalgebra and describe a general framework of how to use
it to generate AG. We also give some criteria on how to decide whether a given
subalgebra is in fact the full ring of invariants.
In Section 4 we describe, still in fairly general terms, the interplay between cer-
tain homomorphisms of invariant rings and their localizations. We show that in
certain circumstances we can construct subalgebras B that contain the image of
the transfer tG1 . As a consequence any nonzero element c ∈ tG1 (A) will lie in the
conductor of B. Moreover we show that a suitable c can be found in degree less
than |G|, in such a way that the localization AG

c is generated in degree 2|G| − 1.
Section 5 investigates the classical Noether - homomorphism from vector invari-
ants of symmetric groups to arbitrary rings of invariants. This homomorphism
was used in one of the original proofs of Emmy Noether for the degree bound in
characteristic zero, that bears her name. Here in the modular situation it turns
out that the image N of the Noether homomorphism contains the image of the
transfer and therfore provides a subalgebra satisfying all the necessary hypothe-
ses described in the earlier sections.
In Section 6 we restrict to the case of p - groups over the prime field Fp and
describe a relation of AG to a new type of “reciprocal invariants” discovered and
studied by one of the authors. This ring of reciprocal invariants is generated in
negative degrees, bounded only by the dimension of the underlying group rep-
resentation, independently of G. Nevertheless it shares a common localization
with AG. Although the degree bound for this localization is weaker than the ones
obtained earlier, the “exceeding degrees” are accounted for by invariants which
are explicitly described and very well understood. In some applications there can
be reason to sacrifice some unknown low degree invariants and rather stick with
“known devils” of higher degree.

2. Invariant Fields

Suppose that K is a field and L = K(a1, · · · , an) is a finitely generated field
extension. As a typical example, L may be a rational function field in n inde-
terminates. Let G be a finite group consisting of automorphisms of L which fix
K element-wise. The following construction gives an easy method for construct-
ing generators of the invariant field LG. This method only involves arithmetic
in a polynomial ring over L. Take two indeterminates T and U , and form the
polynomial

F (T, U) :=
∏
g∈G

(
T −

n∑
i=1

U i−1g(ai)

)
∈ LG[T, U ].
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Moreover, for each i = 1, · · · , n form

Hi(T ) :=
∏

a∈Gai

(T − a) ∈ LG[T ],

where Gai denotes the G-orbit of ai.

Theorem 2.1. In the above situation, let M ⊆ LG be the set consisting of
all coefficients of F (T, U) and of the Hi(T ). Then M generates LG as a field
extension of K.

If K is of characteristic 0, it suffices to take all coefficients of F (T, U) into
M , so the polynomials Hi(T ) are unnecessary.

Proof: Write N := K(M) for the field extension generated by M . We clearly
have N ⊆ LG. To prove the converse, first consider the case char(K) = 0, so M
consists of the coefficients of F (T, U) only. For each u ∈ K we have

(1) F (T, u) =
∏
g∈G

(
T −

n∑
i=1

ui−1g(ai)

)
∈ N [T ],

so
∑n

i=1 ui−1ai is algebraic over N . Choose n distinct elements u1, · · · , un ∈ K
and set bj :=

∑n
i=1 ui−1

j ai. Then by the Vandermonde determinant we have
K(b1, · · · , bn) = K(a1, · · · , an) = L, hence also L = N(b1, · · · , bn). With (1)
it follows that L is the splitting field of

∏n
i=1 F (T, ui) over N . Since all field

extensions in characteristic 0 are separable, we obtain that L is a finite Galois
extension of N .

Now assume that K has positive characteristic and the coefficients of the Hi(T )
are included in M . Then L = N(a1, · · · , an) is the splitting field of

∏n
i=1 Hi(T )

over N and thus a finite normal extension of N . Since Hi(T ) has pairwise distinct
roots, each ai is separable over N , so the extension L is separable as well. As in
the case of characteristic 0, we obtain that L is a finite Galois extension of N .

In both cases, let H be the Galois group. Clearly G ⊆ H, since G consists
of automorphism of L fixing N . To prove the reverse inclusion, take σ ∈ H
arbitrary. Since all coefficients of F (T, U) lie in N , we have σ (F (T, U)) =
F (T, U), where we set σ(T ) := T and σ(U) := U . Thus∏

g∈G

(
T −

n∑
i=1

U i−1g(ai)

)
=
∏
g∈G

(
T −

n∑
i=1

U i−1σ (g(ai))

)
.

We have
∑n

i=1 U i−1σ(ai) ∈ L[U ] as a zero of the right hand side, hence there
exists a g ∈ G with

n∑
i=1

U i−1σ(ai) =
n∑

i=1

U i−1g(ai).

This implies σ(ai) = g(ai) for all i, so σ = g ∈ G. We obtain H = G, so
LG = LH = N by Galois theory. �

We can derive a degree bound for the invariant field from Theorem 2.1. Before
we formulate it, we fix some notation which will be used throughout the paper.
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Let R be a commutative ring, A := R[a1, a2, · · · , an] a finitely generated R -
algebra with set of generators a := {a1, · · · , an} and G a finite group acting on A
by R - algebra automorphisms, stabilizing the R - module

∑n
i=1 Rai. We define

the ring of G - invariants AG := {a ∈ A | g(a) = a, ∀g ∈ G}.
For γ ∈ Nn

0 we define the power product aγ :=
∏n

i=1 aγi

i and |γ| :=
∑n

i=1 γi.

Definition 2.2. (Noether numbers for quotient fields) Assume that A is a
domain and let C ≤ A be an R - subalgebra. Let

Mm(a) :=
∑

α∈Nn
0 , |α|≤m

R · aα.

We define for the quotient field Quot(C): β(Quot(C)) :=

β(Quot(C), a) := min{k ∈ N0 | Quot(R[C ∩Mk(a)]) = Quot(C)}.

The following corollary states that the classical Noether bound holds for in-
variant fields. Note that for invariant rings the Noether bound only holds if the
characteristic of the ground field does not divide the group order (see [7, 10, 15]).
In contrast, the corollary holds in arbitrary characteristic.

Corollary 2.3. In the above situation, let A be a domain. Then

β
(
Quot(AG), a

)
≤ |G|.

Proof: Let H be the image of G under the map G → Aut(A) induced by
the action of G. Then AG = AH and |H| ≤ |G|. Hence we may assume that
G = H is a group consisting of automorphisms of A. With L = Quot(A) and
K = Quot(R), we obtain that LG is generated by the set M of Theorem 2.1. Since
the G-action preserves the R-module

∑n
i=1 Rai, it follows from the construction

of M that all elements from M lie in AG∩M|G|(a). (In fact, it suffices to assume
that G stabilizes R +

∑n
i=1 Rai, i.e., every ai is mapped to a constant plus a

linear combination of the aj.) So

LG = K(M) = Quot (R[M ]) ⊆ Quot
(
R
[
AG ∩M|G|(a)

])
⊆ LG.

Finally LG = Quot
(
AG
)
. This is well-known and follows from the fact that every

f/h ∈ LG with f, h ∈ A can be written as

f/h =
f ·
∏

g∈G\{id} g(h)∏
g∈G g(h)

∈ Quot
(
AG
)
.

�
Let B be a domain and a finitely generated R - algebra, C ≤ B a subalgebra

and assume that Quot(C) = Quot(B). Then it is easy to see that there is a
single element 0 6= c ∈ C such that

Cc := C[1/c] = B[1/c] = Bc.

In the above situation it is known by a result of E. Noether [13], AG is finitely
generated, if R is Noetherian. Taking C := R[AG ∩M|G|(a)] we get:
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Corollary 2.4. Assume that R is Noetherian and A is a domain. Then there
exists c ∈ AG \ {0} such that

R[AG ∩M|G|(a)]c = AG
c

Note that unlike Theorem 2.1 and Corollary 2.3, which are completely con-
structive, the result in this corollary is inconstructive. In particular, it provides
no method for finding an element c with the described property or any degree
bound for such a c. In the sequel we will find degree bounds and more explicit
constructions for such elements c. However, the prize we have to pay for this
is that in most cases we have to make compromises in the quality of our degree
bound. In fact, the general bound will be 2|G| − 1 instead of |G|.

We will use the following

Definition 2.5. (Noether numbers for subrings and localizations) For an
R - subalgebra C ≤ A and 0 6= c ∈ C we define

β(Cc) := β(Cc, a) := min{k ∈ N0 | c ∈Mk(a), Cc = R[C ∩Mk(a), 1/c]}.

3. Subrings and Conductors

In the rest of this paper, unless explicitly stated otherwise, all rings considered
are assumed to be domains.

Definition 3.1. Let B ≤ A ⊆ Quot(A) be domains. The set

C(B, A) = [B : A]A := {c ∈ A | cA ⊆ B}
is called the conductor of A into B. We also define

T (B, A) := {b ∈ B \ {0}| bA ∩B = bB}.
We have

Lemma 3.2. (1) C(B, A) = {b ∈ B | b−1B ∩ A = A} ∪ {0} is the largest
ideal in A which is contained in B.

(2) T (B, A) := {b ∈ B\{0} | b−1B ∩ A = B} is the largest multiplicative
subset S of B with BS ∩ A = B.

(3) The following are equivalent:
(i) A = B;
(ii) T (B, A) ∩ C(B, A) 6= ∅;
(iii) C(B, A) = A;
(iv) T (B, A) = B\{0} and C(B, A) 6= 0;

Proof: 1. is obvious. 2.: Let b, b′ ∈ T (B, A) and a ∈ A with x := bb′a =

b(b′a) ∈ B. Then bb′a = bb′′ with b′′ ∈ B, hence b′a = b′′ ∈ b′A ∩ B, so b′a = b′b̃

with b̃ ∈ B and a = b̃. It follows that x = bb′b̃ ∈ bb′B, so bb′A ∩ B = bb′B and
bb′ ∈ T (B, A). This shows that T := T (B, A) is multiplicative with BT ∩A = B.
On the other hand, if S ⊆ B is multiplicative with BS ∩ A = B, then clearly
S ⊆ T .
3.: “(ii) ⇒ (i)”, “(i) ⇒ (iii)” and “(iii) ⇒ (ii)” are obvious (note that 1 ∈
T (B, A)). But also “(i) ⇒ (iv)” and “(iv) ⇒ (ii)” are clear. �
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Theorem 3.3. Let A = B[a1, · · · , ak] and B Noetherian, then the following are
equivalent:

(1) C(B, A) 6= 0.
(2) Quot(B) = Quot(A) and A is integral over B.

Proof: “(1) ⇒ (2) ”: Let 0 6= c ∈ C := C(B, A). Then cA ⊆ B, hence
Ac ⊆ Bc, so Quot(A) = Quot(B). Now take c ∈ C(B, A) \ 0. Then cA is an
ideal in B and therefore a finitely generated B - module. But c ∈ B, so cA is
isomorphic to A as a B - module. Thus A is a finitely generated B - module, so
A is integral over B.
“(1) ⇐ (2)”: Since A is integral over B, A is a finitely generated B - module,
say generated by e1, · · · , ek. Since Quot(B) = Quot(A), we have ej = uj/vj with
uj, vj ∈ B and clearly the product 0 6= v1v2 · · · vk is contained in C. �

For n ∈ N and an R - subalgebra B ≤ A, define B[n] := R[B ∩Mn(a)]. If R is
a field, V ∈ RG−mod and A := Sym(V ∗) with {ai | 1 ≤ i ≤ n} being a basis of
V ∗, then ∏

g∈G

(T − g(ai)) ∈ AG
[|G|][T ],

hence AG is integral over any B ≤ AG containing AG
[|G|]. We get:

Corollary 3.4. Let A := Sym(V ∗), m := |G| and AG
[m] ≤ B ≤ AG.

Then T (B, A) = T (B, AG) and C(B, AG) 6= 0.

Proof: Let b ∈ B \ {0}. Since b−1B ∩ A = b−1B ∩ AG, Lemma 3.2 (2) shows
T (B, A) = T (B, AG). Since AG is integral over B, the fact that C(B, AG) 6= 0
follows from 3.3 together with 2.3. �

The significance of 3.4 and the importance of knowing nonzero elements in
the conductor can be seen as follows: We are in precisely one of the following
situations:

(1) either T (B, A) = B\{0} in which case B = AG,
(2) or ∃ b ∈ (B\{0})\T (B, A), in which case

B $ b−1(bA ∩B) = AG ∩ b−1B ⊆ AG.

This means that a “new invariant” b′ can be obtained, dividing a suitable
element of bA ∩B by b.

(3) Setting B′ := B[b′] we can go to (1) and iterate.

Since B < B′ ≤ AG are B - submodules of the noetherian B - module AG

this process must terminate with AG. Note that bA ∩ B = bAG ∩ B, so the
calculations can in principle be done without knowing AG. Moreover, finding a
nonzero element in the conductor C(B, AG) brings us one step short of calculating
generators for AG:

Proposition 3.5. Let 0 6= c ∈ C(B, AG), and b1, · · · , bt ∈ B generators of the
ideal cA ∩B E B. Define [B : c]A := {a ∈ A | ac ∈ B}, then b′i := bi/c ∈ AG for
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i = 1, . . . , t and

AG = [B : c]A = c−1(cA ∩B) =
t∑

i=1

Bb′i = B[b′1, · · · , b′t].

Proof: Since

cA ∩B = cAG ∩B = cAG =
t∑

i=1

Bbi E B,

the element c divides every bi in A and AG. Hence b′i ∈ AG and the result follows.
�

Assume that F = R is a field and A = F[a1, · · · , an] is a finitely generated
algebra. Once the subalgebra algebra B and the element 0 6= c ∈ C(B, AG)
are given, the intersection cA ∩ B can be calculated by standard elimination
techniques using Groebner bases. The following is a variation of [5], Proposition
15.30:

Proposition 3.6. Let A = F[Y1, · · · , Yn]/I with ideal I E F[Y1, · · · , Yn] and sub-
algebra B := F[f1, · · · , fm] ≤ A, where fj := Fj(a1, · · · , an) with ai := Yi mod(I)
and Fj ∈ F[Y1, · · · , Yn]. Let C ∈ F[Y1, · · · , Yn] and set c := C(a1, · · · , an) ∈ A.
Now consider the polynomial ring T := F[Y1, ..., Yn, Z1, ..., Zm], form the ideal
J E T , generated by I, C and all Fj − Zj and let E be the elimination ideal
J ∩ F[Z1, ..., Zm].
If Ψ is the epimorphism of algebras

Ψ : T → A, Yi 7→ ai, Zj 7→ fj,

then ker(Ψ) = (I, Fj − Zj | j = 1, · · · , m)T , Ψ(F[Z1, ..., Zm]) = B, Ψ(J) = cA
and

Ψ(E) = cA ∩B.

In particular, substituting Zi 7→ fi in each generator of E yields generators for
cA ∩B.

Proof: Clearly R := (I, Fj − Zj | j = 1, · · · , m)T ≤ ker(Ψ). Let λ(Y,Z) ∈
ker(Ψ), then λ(Y, F1(Y), · · · , Fm(Y)) ∈ I and

λ(Y,Z)− λ(Y, F1(Y), · · · , Fm(Y)) ∈ (Fj − Zj | j = 1, · · · , m)T,

so λ(Y,Z) ∈ R and ker(Ψ) = R. It is clear that Ψ(J) = cA, Ψ(F[Z1, ..., Zm]) =
B and Ψ(E) ⊆ cA ∩ B. Let χ = Ψ(f) = Ψ(h(Z)) with f ∈ J and h ∈
F[Z1, ..., Zm]. Then h(Z) = f + h(Z) − f ∈ f + ker(Ψ) ⊆ J , so h(Z) ∈ E
and Ψ(E) = cA ∩B. �

Remark 3.7. The calculation of generators for the elimination ideal E = J ∩
F[Z1, ..., Zm] is a standard application of Groebner bases, hence 3.6 provides an
algorithm to calculate generators for AG, once a subalgebra B ≤ AG and an
element 0 6= c ∈ C(B, AG) are known. In 4.1 and 5.4 we will consider situations
where suitable subalgebras B and nonzero conductor elements arise.
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The following lemma gives two further conditions for B = AG, one of them is
in terms of the grade of C(B, AG) acting on B. Recall that for an ideal I E R of
a ring R and an R - module M with IM $ M the grade grade(I, M) is defined
to be the maximal length of a regular M - sequence inside I. If M = IM , then
grade(I, M) := ∞ (see [3] Def. 1.2.6).

Proposition 3.8. Let B ≤ AG and assume C := C(B, AG) 6= 0.

(1) AG = B ⇐⇒ grade(C, B) ≥ 2.

(2) If
√

C contains a nonzero principal radical ideal of B, i.e. an ideal 0 6=
bB =

√
bB, then B = AG.

Proof: (1): “⇒” follow from the definition of grade, since in this case C = B.
“⇐”: first assume that CB = B; then 1 ∈ B = CB = C, hence AG = CAG ⊆
B ⊆ AG. Now assume CB $ B, let (c, c′) be a regular sequence in C on B and
let a ∈ AG. Then ca = b ∈ B the equation c′b = cc′a implies that b = cb′ for
some b′ ∈ B. Hence a = b′ ∈ B.
(2): Suppose 0 6= bB =

√
bB ⊆

√
C. Then bNAG ⊆ B for some N > 0. Hence

(bAG ∩B)N+1 ⊆ bbNAG ⊆ bB.

It follows that bAG ∩ B = bB, so b ∈ T (B, AG) and bN ∈ T (B, AG) ∩ C. The
result follows from 3.2. �

4. Homomorphisms and Localization

In the last section we have seen the importance of constructing subalgebras
B ≤ AG with Quot(B) = Quot(AG) and explicit nonzero elements in the con-
ductor C(B, AG). In this section we describe a generic situation in which this can
be achieved. The results obtained here will later be applied in a more specialised
case (see 5.4). From now on we will always assume that G acts faithfully on A.

Let H ≤ G be a subgroup of index m and G := ∪m
i=1 giH the coset decompo-

sition. Assume that AH is known and consider the relative transfer map with
respect to H:

tGH : AH → AG, a 7→
m∑

i=1

gi(a)

This is an AG - module homomorphism and the image tGH(AG) is an ideal in AG,
called the relative transfer ideal (w.r.t. H). This ideal plays an important
role in the construction of AG by “transfering H - invariants into G - invariants”.

Let G̃ be a finite group, θ : G → G̃ a group homomorphism and B an R
- algebra on which G̃, and hence G, act by R - algebra automorphisms. Let
ν : B → A be a G - equivariant homomorphism of R - algebras; then clearly
ν(BG) is a subalgebra of AG, which in general will be a proper inclusion, even if
ν(B) = A.

However the algebras ν(BG) and AG are still closely related: it turns out
that the quotient fields Quot(AG) and Quot(ν(BG)) coincide and AG is purely

inseparable over ν(BG). For the subalgebra C ≤ A and n ∈ N let n
√

C := {a ∈
A | an ∈ C}.
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Theorem 4.1. For H̃ ≤ G̃, a subgroup of index m = [G : H], assume that

ν(BH̃) = AH and G̃ = ∪m
i=1θ(gi) · H̃. Then

(1) tGH(AH) = ν(tG̃
H̃

(BH̃)) E AG is a nonzero ideal of AG, contained in the

subalgebras ν(BG̃) ≤ ν(BG) ≤ AG. In particular

tGH(AH) ⊆ C(ν(BG̃), AG) ⊆ C(ν(BG), AG).

(2) For every 0 6= c ∈ tGH(AH) we have for the localizations:

ν(BG̃)c = ν(BG)c = (AG)c.

In particular, Quot(AG) = Quot(ν(BG)) = Quot(ν(BG̃)).
(3) Now assume that Fp ⊆ R and let pr be the maximal p - power dividing m.

Then pr
√

ν(BG) = AG, i.e. for every f ∈ AG, fpr ∈ ν(BG).

Proof: 1. The field extension Quot(A) : Quot(A)G is Galois’ with Quot(A)G =
Quot(AG). By standard Galois theory the trace map tG1 : Quot(A) → Quot(A)G

is surjective. In particular there is r ∈ A and 0 6= s ∈ AG such that tG1 (r/s) = 1,
or equivalently, tG1 (r) = tGH(tH1 (r)) = s 6= 0. This shows that tGH(AH) is nonzero.
The rest of 1. is obvious, since ν is G - equivariant (with the θ(G) - operation

on B), and ν(BH̃) = AH .
2. Let 0 6= c ∈ tGH(AH), then we have by (1):

cAG ⊆ tGH(AH) ⊆ ν(BG̃) ⊆ ν(BG) ⊆ AG.

Hence (AG)c = ν(BG̃)c = ν(BG)c and

Quot(A)G = Quot((AG)c) = Quot(ν(BG̃)c) = Quot(ν(BG̃)).

3. Let m = prs with gcd(p, s) = 1, let Q be a Sylow p - group of H and P a Sylow
p - group of G containing Q. Let f ∈ AG; by the hypothesis there is b ∈ BH

with ν(b) = f . Define η :=
∏

g∈P/Q g(b) ∈ BP . Then

ν(tGP (η)) =
∑

x∈G/P

ν(xη) =
∑

x∈G/P

x(ν(
∏

g∈P/Q

g(b))) =

∑
x∈G/P

x(
∏

g∈P/Q

gν(b)) =
∑

x∈G/P

x(ν(b)pr

) = [G : P ] · ν(b)pr

.

Hence fpr ∈ ν(BG). �
In the situation of 4.1 let K := ker ν. The short exact sequence 0 → K →

B → A → 0 of BG - modules induces the exact sequence

0 → KG → BG → AG → H1(G, K),

with δ : AG → H1(G, K) a connecting homomorphism. In particular the al-

gebras BG̃ ≤ BG act on H1(G, K) in a natural way. Clearly AG = ν(BG), if
and only if δ is the zero map, for example if H1(G, K) = 0. The following is a
slightly sharper criterion in terms of grades of relative transfer ideals acting on
H1(G, K):
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Proposition 4.2. Assume that

grade(tGH(BH), H1(G, K)) ≥ 1, or grade(tG̃
H̃

(BH̃), H1(G, K)) ≥ 1.

Then ν(BG) = AG.

Proof: Let I := tGH(BH), J := tG̃
H̃

(BH̃) and assume that 0 6= t ∈ I ∪ J is

regular on H1(G, K). Note that by the hypotheses of 4.1, we have ν(BH) ⊆
AH = ν(BH̃), hence

ν(tGH(BH)) = tGH(ν(BH)) ⊆ tGH(ν(BH̃)) = ν(tG̃
H̃

(BH̃)) = tGH(AH).

Since AG/ν(BG) = Im δ and t acts on this quotient as ν(t), 4.1 implies that
t(Im δ) = 0, hence Im δ = 0 and therefore ν(BG) = AG. �

Obviously we have β(Quot(AG), a) ≤ β(AG, a) and in general this will be a
strict inequality. If B = R[b1, · · · , bn] and A are domains with ν : B → A a G -
equivariant R - algebra epimorphism, then 4.1 shows:

Corollary 4.3. β(Quot(AG), ν(b)) ≤ β(BG,b).

Remark 4.4. Let R = F be a field and A = Sym(V ∗) with V ∗ = 〈vG〉, where vG

denotes the G - orbit v. If |vG| =: t, then we can take B := F[Xgv | gv ∈ vG] with
ν : B → A defined by Xgv 7→ gv. Using Göbel’s degree bound for permutation
invariants [11] this implies

β(Quot(AG)) ≤ β(BG) ≤
(

t

2

)
.

If R is Z or a field of characteristic p dividing |G|, one knows that general
degree bounds β(AG) cannot depend only on |G|. For A a polynomial ring the
following degree bound is conjectured to hold (see [4] 3.9.10):

(2) β(AG) = max{|G|, Dim(A)(|G| − 1)}.

However for the quotient field Quot(AG) the Noether bound still holds (see 2.3).
It also turns out that the localization of AG at a single suitable invariant, in fact
a non - zero transfer element of degree ≤ |G|, satisfies at least a ‘global degree
bound’ close to the Noether bound. To see this we need the following lemma,
which describes a decomposition, in the ambient ring A, of high “degree”
relative transfer elements:

For the next two lemmas, R and A can be arbitrary commutative rings. The
following lemma is in fact a corollary to the Fogarty and Benson’s proof of the
Noether - bound in the coprime case (see [10]):

Lemma 4.5. Let m := {1, 2, · · · , m}. For b, b1, b2, · · · , bm ∈ AH we have

tGH(bb1 · · · bm) =
∑

I⊂m, I 6=m

(−1)m−|I|+1 tGH(b
∏
j∈I

bj)
∏

j∈m\I

gj(bj).



HOMS AND LOCS 11

Proof: We consider the obvious equality for fixed i:
m∏

j=1

( gi(bj)− gj(bj) ) = 0.

Expansion and multiplication with gi(b) for fixed i gives:

0 =
∑
I⊆m

(−1)m−|I| (
∏

j∈m\I

gj(bj) ) · (
∏
j∈I

gi(bj)) · gi(b).

Now summation over i ∈ m yields the claimed identity. �

Definition 4.6. For A = R[a1, · · · , an] we define δ(AG, a) to be the minimal
number k ∈ N0 such that there is a power product f := aγ with |γ| =

∑n
i=1 γi = k

and tG1 (f) 6= 0.

Lemma 4.7. If tG1 (A) 6= 0, then δ(AG, a) ≤ |G| − 1.

Proof: Assume otherwise. Then 4.5 shows for H = 1, A = R[a1, · · · , an],
m := |G|, b = 1 and b1, b2, · · · , bm ∈ A:

tG1 (b1 · · · bm) =
∑

I⊂m, I 6=m

(−1)m−|I|+1 tG1 (
∏
j∈I

bj)
∏

j∈m\I

gj(bj),

An obvious iteration yields the contradiction tG1 (A) = 0. �

Theorem 4.8. Let m = |G| and A = R[a1, · · · , an] be a domain. Then δ :=
δ(AG, a) ≤ m− 1 and for every f ∈Mδ(a) with 0 6= c := tG1 (f) one has:

(AG)c = R[AG ∩Mm+δ(a), 1/c],

hence β(AG
c , a) ≤ δ + |G| ≤ 2 · |G| − 1.

Proof: Let D := R[AG ∩Mδ+m(a), 1/c]. Since A is a domain, tG1 (A) 6= 0 by
4.1, hence there is c := tG1 (f) 6= 0 with f as in 4.7. Define R : Ac → (AG)c, x 7→
1/c · tG1 (fx). Then R is a ‘Reynolds - operator’, i.e. an AG

c - linear projection
from Ac to AG

c . Applying R to the equation in 4.5, we see that for each x ∈ A
and b1, · · · , bm ∈ {a1, · · · , an}:

(3) tG1 (x · b1 · · · bm) =
∑

I⊂m, I 6=m

(−1)m−|I|+1 tG1 (x
∏
j∈I

bj) · R(
∏

j∈m\I

gj(bj)).

Since R(Mm(a)) ⊆ D we get

cAG ⊆ tG1 (A) ≤ D ≤ (AG)c,

hence (AG)c = Dc = D. �

Remark 4.9. Let R be a field of characteristic p > 0, V an RG - module and G
a p - group. Then tG1 (V ) 6= 0 if and only if V contains a direct summand which
is a free RG - module (e.g. see [9], Lemma 3.2). Hence it follows from 4.7 and
4.8 that the RG - module Sym(V ∗) always contains a free summand in degree
strictly less than |G|.
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If δ(AG, a) ≤ 1, then the result in 4.8 gives β(AG
c , a) ≤ |G|+1. However, there

is a refinement of 4.8, which implies the Noether bound in that case:

Theorem 4.10. Let m := |G|, A a domain, δ := δ(AG, a) and f ∈ Aδ with
0 6= c = tG1 (f). Define the norm of f by NG(f) :=

∏
g∈G g(f) ∈ AG. Then

AG
c = R[NG(f), AG ∩Mm+δ−1(a), 1/c].

In particular, if δ = 1, i.e. f ∈ 〈a1, a2, · · · , an〉R, then

β(AG
c , a) ≤ |G|.

Proof: Using 4.5 with the gi’s replaced by their inverses, we get for arbitrary
b1, · · · , bm ∈

∑n
i=1 Rai:

tG1 (f · b1 · · · bm) =
∑

I⊂m, I 6=m

(−1)m−|I|+1 tG1 (f
∏
j∈I

bj) ·
1

c
tG1 (f(

∏
j∈m\I

g−1
j (bj))) =

(−1)m+1 tG1 (f(
∏

j=1,··· ,m g−1
j (bj)))+ summands of the form 1

c
· tG1 (f ·Mm−1(a)) ·

tG1 (f · Mm−1(a)) ⊆ A. Hence tG1 (f · b1 · · · bm) ≡

(−1)m+1tG1 (g−1
i (bi) · f ·

∏
j=1,··· ,m,

j 6=i

g−1
j (bj)) mod R[1/c, AG ∩Mm+δ−1(a)].

Using equation 3 in the proof of 4.8 with x := g−1
i (bi) and the b1, · · · , bm there

replaced by the m factors g−1
1 (b1) · · · g−1

i−1(bi−1) · f · g−1
i+1(bi+1) · · · g−1

m (bm) we get:

tG1 (g−1
i (bi) g−1

1 (b1) · · · g−1
i−1(bi−1) · f · g−1

i+1(bi+1) · · · g−1
m (bm)) ≡

(−1)m+1 tG1 (bi)

c
· tG1 (f b1b2 · · · gi(f) · · · bm) mod R[1/c, AG ∩Mm+δ−1(a)],

hence by iteration tG1 (f · b1 · · · bm) ≡ tG1 (bi)

c
· tG1 (f b1b2 · · · gi(f) · · · bm) ≡ · · ·

≡ tG1 (b1)t
G
1 (b2) · · · tG1 (bm)

cm
·NG(f)·tG1 (f) ≡ 0 mod R[NG(f), 1/c, AG∩Mm+δ−1(a)].

Hence

AG
c =

1

c
tG1 (fA) = R[1/c, NG(f), AG ∩Mm(a)],

If f ∈ 〈a1, a2, · · · , an〉R, then NG(f) ∈ AG ∩Mm(a), which proves the second
claim. �
The following result provides cases where the Noether bound for AG

c can be
established via 4.10.

Proposition 4.11. Let R be a field of characteristic p > 0 dividing |G|, let V
be a finite - dimensional RG - module and A = Sym(V ∗) with a1, · · · , an being
an R - basis of V ∗. Assume that V has a submodule W ≤ V which is projective
and has a non-zero factor module W/U on which G acts trivially 1.
Then δ(AG, a) = 1.
(This is for example the case, if V ∼= V ′ ⊕RG.)

1this implies that W ∗ is a direct summand of V ∗ with (W ∗)G 6= 0
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Proof: If f ∈ M0(a), then f is a constant and tG1 (f) = |G| · f = 0, hence
0 < δ(AG, a). Note that W as well as W ∗ are projective and injective, hence
they both are direct summands of V and V ∗, respectively. By the assumption
on W , we have (W ∗)G 6= 0. Since W ∗ is projective, there is α ∈ EndR(W ∗) with

tG1 (α) :=
∑
g∈G

g ◦ α ◦ g−1
|W ∗ = idW ∗ ,

(see [2] 3.6.4). Now take 0 6= f ∈ (W ∗)G, then 0 6= f = idW ∗(f) =∑
g∈G

g ◦ α ◦ g−1(f) =
∑
g∈G

g ◦ α(f) = tG1 (α(f)) ∈ tG1 (M1(a)).

This shows that δ(AG, a) = 1. �

5. The Noether Homomorphism

Special types of permutation invariants can be used to construct generators of
arbitrary invariant rings, using ideas of Emmy Noether [12]. Of particular inter-
est are the vector invariants of symmetric groups, which we will now discuss.

Let A(k, n) be the polynomial ring R[X11, ..., Xk1, ..., X1n, ..., Xkn] in k × n vari-
ables, Σn the symmetric group on n letters and define an action of Σn on A(k, n)
by extending the permutation action σ(Xij) := Xiσ(j). The corresponding ring
of invariants A(k, n)Σn is usually called the ring of (k - fold) vector invariants.
Let Y := (Y1, . . . , Yk) be a ‘vector of variables’; then the multivariate polynomial

G(X1, . . . ,Xn;Y) :=
n∏

j=1

(1 +
k∑

i=1

Xi,jYi) ∈ A(k, n)Σn [Y1, . . . , Yk]

is called the Galois - resolvent. Let G ≤ A(k, n)Σn be the subalgebra generated
by the coefficients of G(X1, . . . ,Xn;Y).

Theorem 5.1. For any domain R we have Quot(A(k, n)Σn) = Quot(G); in
particular β(Quot(A(k, n)Σn)) = n.

Proof: The proof is a slight variation of the proof of 2.3. We replace the
Hi there by fi :=

∏n
k=1 (T − Xik) and define M to be the set of coefficients of

G(X1, . . . ,Xn;Y) ∈ A(k, n)Σn [Y1, . . . , Yk]. For any ring S and polynomial F ∈
S[Y1, · · · , Yk] we denote the coefficient of F at Yγ := Y γ1

1 · · ·Y γk

k by coeffYγ (F ).
We show that M contains the coefficients of the fi: Indeed, for 1 ≤ ` ≤ n:

±coeffT n−`(
n∏

j=1

(T −Xij)) = e`(Xi1, · · · , Xin) = coeffT n−`(
n∏

j=1

(T + Xij)) =

coeffY `
i
(

n∏
j=1

(1 + XijYi)) = coeffY `
i
(G(X,Y)) ∈ M.

Here e` denotes the `’th elementary symmetric function. Since M contains the
coefficients of the fi we have that K := Quot(A(k, n)) = Quot(G)(X) is a finite
separable Galois extension of Quot(G) with Galois group H. It also follows that
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for every fixed i = 1, · · · , k, H permutes the variables Xij, which are the roots
of fi ∈ Quot(G)[T ]. Now form the polynomial

F := T nG(X1, . . . ,Xn;−Y1/T, . . . ,−Yk/T ) =
n∏

j=1

(T −
k∑

i=1

Xi,jYi).

Let h ∈ H. Since h fixes the coefficients of G, it also fixes the coefficients of F ,
so h(F ) = F (where H acts trivially on T= and the Yi). Since the zeros of F ,
considered as a polynomial in T , are all distinct, there exists σ ∈ Σn such that

k∑
i=1

h(Xi,j)Yi =
k∑

i=1

Xi,σ(j)Yi

for all j = 1, . . . , n. This implies h(Xi,j) = Xi,σ(j) for all i, j. It follows that
H = Σn with ‘diagonal action’ and KΣn = Quot(G). �

In Hermann Weyl’s book ‘Classical groups’ [16] one can find a proof of the
following

Theorem 5.2. (Weyl) If Q ⊆ R, then A(k, n)Σn is generated by the coefficients
of the Galois - resolvent G(X1, . . . ,Xn;Y). They all have total degree ≤ n, so
β(A(k, n)Σn) ≤ n.

The analogue of Weyl’s theorem is false if R = Z or a field of characteristic
p ≤ n. This can be seen from the Σ2 - invariant X := (X1 · · ·Xk)

+ := X1 · · ·Xk +
Y1 · · ·Yk, which is indecomposable over Z or F2 for all k ∈ N. In [14] it was proved
by D. Richman, that the analogue of Weyl’s theorem holds if n! is invertible in R
(for a different proof using 4.5 , see [8]). For arbitrary coefficients the following
has been shown in [6]

Theorem 5.3. β(A(k, n)Σn) ≤ max{n, k · (n− 1)} with equality if n = ps for a
prime p and char R = p, or R = Z.

To make use of these results in the context of arbitrary invariant rings, consider
a subgroup H ≤ G with index n and with set of left - cosets

G/H := {H := g1H, g2H, . . . , gnH}.
The left multiplication action of G on the set G/H gives rise to the Cayley -
homomorphism

ρ : G → ΣG/H
∼= Σn, g 7→ (giH 7→ gjH := ggiH).

Suppose that A := R[a1, . . . , ad] and AH = R[b1, . . . , bk] with bi ∈ Mβ(a) and
β := β(AH , a). Note that G acts on A(k, n) via ρ; then the map Xsi 7→ gi(bs)
defines a G - equivariant homomorphism ν : A(k, n) → A of R - algebras. In
fact, ν does not depend on the choice of the gi and

ν(g(Xsi)) = ν(Xsj) = gj(bs) = ggih(bs) = ggi(bs) = gν(Xsi),

because ggi = gjh
−1 for a suitable h ∈ H and j := ρ(g)(i). The map ν for

H = 1 was used in Emmy Noether’s 1916 - paper to prove her degree bound in
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characteristic zero. It is therefore called the Noether homomorphism. Since
ν is G - equivariant, with the ρ(G) - operation on A(k, n), we have

N := ν(A(k, n)Σn) ⊆ AG.

A sharpening of the arguments in 4.1 shows that AG is purely inseparable over
N and both algebras have the same quotient field. Set G̃ := Σn, B := A(k, n),
ν the Noether homomorphism and H̃ := (Σn)1

∼= Σn−1 be the stabilizer of 1.

Then ρ(H) ≤ H̃, so ν(A(k, n)H̃) ≤ AH . Moreover ν(Xs1) = g1(bs) = bs with

Xs1 ∈ A(k, n)Y , hence ν(A(k, n)H̃) = AH and we can apply 4.1:

Theorem 5.4. Let H̃ := (Σn)1
∼= Σn−1 be the stabilizer of 1. Then

(1) tGH(AH) = ν(tΣn

H̃
(A(k, n)H̃)) ⊆ N ⊆ ν(A(k, n)G/ker ρ) ⊆ AG.

(2) For every 0 6= a ∈ tGH(AH) we have Nc = (AG)c. In particular, if A is a
domain, then Quot(AG) = Quot(N ).

(3) Assume that Fp ⊆ R and let pr be the maximal p - power dividing n. Then
pr√
N = AG.

Proof: Only (3) does not immediately follow from 4.1: Let n = prq with
gcd(p, q) = 1.Then

n :=

(
n

pr

)
≡ q 6≡ 0 mod(p),

as can be seen by comparing coefficients of xpr
in the modular identity

n∑
j=0

(
n

j

)
xj = (x + 1)n ≡ (xpr

+ 1)q =

q∑
i=0

(
q

i

)
xipr

mod(p).

Let h = h(b1, . . . , bk) ∈ AG; then we define

Ψ :=
1

n
(
∑ pr∏

`=1

h(X1i` , X2i` , · · · , Xki`) )

where the sum is over all the n integer sequences 1 ≤ i1 < i2 < · · · < ipr ≤ n. It
follows that Ψ ∈ A(k, n)Σn ; moreover

ν(h(X1ij , X2ij , · · · , Xkij)) = gij(h(b1, b2, · · · , bk)) = h(b1, b2, · · · , bk),

hence ν(Ψ) = hpr ∈ N . �

Let β(k, n) := β(A(k, n)Σn) and A(k, n)Σn = R[F1, . . . , Fs] with
Fi ∈Mβ(k,n)(X), then AG = R[ν(F1), . . . , ν(Fs)] with ν(Fi) ∈Mβ(k,n)β(a)∩AG.
In particular if the index n = [G : H] is invertible in R, then

β(AG, a) ≤ β(k, n)β(AH , a).

If p is a prime and R is of characteristic p, then we can take H = P , a Sylow
- p group of G. Since the index [G : P ] is invertible, one can apply 5.4 and
construct AG from AP via vector invariants. Using 4.7, 5.4 and 5.3 (for H = 1)
we can summarize:
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Theorem 5.5. Let p a prime with Fp ≤ R and let pr be the maximal p - power
dividing n := |G|. Assume A := R[a1, · · · , ak] is a domain on which G acts by R
- algebra automorphisms stabilizing the R - module 〈a1, · · · , ak〉. Let

A(k, n) = R[Xjg | j = 1, · · · , k, g ∈ G]

with Noether - homomorphism

ν : A(k, n) → A, Xjg = g(aj), and N := ν(A(k, n)Σn).

Then the following hold:

(1) There is a γ = (γ1, . . . , γk) ∈ Nk
0 with |γ| < |G| such that f := tG1 (aγ) 6= 0.

For each such f we have β(AG
f ) ≤ 2|G| − 1.

(2) tG1 (A) ⊆ C(N , AG) and AG = pr√
N . Furthermore,

β(N ) ≤ max{|G|, k(|G| − 1)}.

(3) Setting B := N and 0 6= c := f we can apply the methods described in
3.6 to calculate generators for AG = N ∩ cA.

6. Explicit localizations and reciprocal rings of invariants

In this section we describe a different but very explicit localization of invariant
rings of p - groups over the prime field Fp, which satisfies the conjectured degree
bound given in equation (2) on page 11. Of course we have already obtained a
better bound for localizations in 4.8, but the localization we are going to describe
is of special interest, because it is shared by a new type of “reciprocal ring of
invariants”, which itself is generated in “negative degree” bounded by dim(V ),
independently from |G|. The dependence on |G| of the degree bound for the
localization arises from the process of “clearing denominators”, which involves
only explicitly described “norms” of degree ≤ |G|.

Let p be a prime, V a finite-dimensional vector-space over Fp and G ≤ GL(V )
a non-trivial p - group. Let V G denote the subspace of G - fixed points in V and
set n := dim(V ) and m := dim(V G) so that 1 ≤ m ≤ n−1. Let S(V ) := Sym(V )
denote the symmetric algebra of V over Fp and S(V )G the ring of G - invariants.

Let A(V ) be the Fp - subalgebra of Quot(S(V )) generated by the set {v−1 | v ∈
V \{0}}. Then G acts naturally on A(V ). Suppose further, as we may, that
G stabilizes the flag {Vi} in V associated to the basis {v1, v2, · · · .vn} for V
with V G = Vm (here Vi := 〈v1, · · · , vi〉 for i = 1, 2, · · · , n and V0 := {0}). In
[17](Corollary 10.6) it has been shown that the Fp - algebra of G - invariants
A(V )G is generated by the set T consisting of the v−1 for v ∈ V G\{0} and the
orbit sums of products of the form (um+1um+2 · · ·un)−1, where each uj ∈ Vj\Vj−1

or uj = 1 (these have “degree” at most n−m). This remarkably low degree bound
of n − m for A(V )G, which is in stark contrast to the actual and conjectured
degree bounds for S(V )G is accounted for by the miracle of “partial fraction
decompositions” and the simple identity

(uv)−1 = (v − u)−1(u−1 − v−1),
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which, together with the “degree 1” hsop consisting of the sums
∑

u∈Vk
(vk+1 +

u)−1 for k = 0, 1, · · · , n−1, enables us to dissipate any build up of “high degree”
expressions (as often occurs in S(V )G). (See [17] for a deeper study and further
background on A(V ) and A(V )G.)

Put λ :=
∏

v∈V \{0} v ∈ S(V )G. Clearly λ is the product of certain norms

N(v) :=
∏

w∈vG w, i.e. orbit - products of v ∈ V \{0} under G, each of which is
of degree at most |G|. Then, as we will see below, one obtains a generating set
for the localization S(V )G

λ as an Fp - algebra, which implies

β′(S(V )G
λ ) ≤ max{|G|, (n−m)(|G| − 1)}.

Here we have refined the definition of β to β′ in order to allow for the inversion
of several invariants of degree at most |G|. Thus, using the notation of Section
2, if given c = c1c2 · · · cl (say), we put β′(Cc) :=

β(Cc, a) := min{k ∈ N0 | c1, c2, · · · , cl ∈Mk(a), Cc = R[C ∩Mk(a), 1/c]}.

Theorem 6.1. We retain the notation of Section 6 . In particular G ≤ GL(V )
is a non-trivial p - group. The localization S(V )G

λ is generated as an Fp - algebra
by λ−1 (or alternatively by the N(v)−1, v ∈ V \{0}) and the set S consisting of
the norms N(v), v ∈ V \{0} together with certain orbit - sums of products of
vectors of degree at most (n−m)(|G| − 1).

Proof: Clearly the localization S(V )G
λ identifies first with R = Fp[v, v−1 |v ∈

V \{0}]G and hence with the localization A(V )G
λ−1 . Note that there is no ambi-

guity in notation here since λ is G - invariant. The theorem now follows directly
on observing that since the ring R above contain all the norms N(v) and their
inverses N(v)−1 for nonzero v ∈ V , we may “clear denominators” in the generat-
ing set T above by multiplying each orbit sum with at most (n−m) such norms
and thereby obtain the orbit sums in S(V )G described in S above. �

Remark 6.2. (1) The invariant ring A(V )G, besides sharing a common lo-
calization with S(V )G, is also F - isomorphic to S(V ∗)G, i.e. in this case,
isomorphic up to pure inseparability (see [17], Lemma 7.2). In particular
this shows that, although the rings S(V )G and S(V ∗)G can behave quite
differently, their fields of fractions are always F - isomorphic (indeed the
localization S(V )G

λ and the corresponding S(V ∗)G
λ∗ are F - isomorphic).

(2) We denote by A the Fp - subalgebra of S(V )G generated by the norms and
orbit sums given in S above with degrees bounded by

max{|G|, (n−m)(|G| − 1)}.

Then, at least in principle, we can “grow” A up to S(V )G by looking for
f ∈ A divisible by some norm N(v) in S(V )G but not in A and then
adjoining fN(v)−1 ∈ S(V )G to A.
Since S(V )G is integral over A, repeating this procedure a finite number
of times will eventually reach S(V )G.
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