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Abstract. Let A = BG, where B is a Noetherian algebra over a field

K of characteristic p 6= 0 and G is a finite group such that p divides |G|.
We give estimates for the depth of A in terms of the codimension of the

branch locus of the extension B/A.

1. Introduction

Let B be a commutative Noetherian ring and G a finite group of auto-
morphisms. Further, let A = BG be the invariant ring. One of the main
goals of invariant theory is the comparison of properties of A and B in terms
of the properties of the extension. In the classical case the ring B = S(V )
is a symmetric algebra of a linear space V , that is, a polynomial algebra,
and G ≤ GL(V ). In this case the ring B is “good” and the question is
what kind of “goodness” we can be expect of A under what conditions on G
and the extension B/A. A typical example is the Chevalley-Shephard-Todd
Theorem which settles the question of when S(V )G is a polynomial algebra
(under the assumption that the ground field has characteristic zero): ”if and
only if G is generated by pseudo-reflections”. This statement can be refor-
mulated in terms of the “branch locus” of the extension (see [N]). Namely,
the algebra S(V )G is a polynomial algebra “if and only if the branch lo-
cus of the extension S(V )/S(V )G is pure and has codimension one” (note
that “only if” follows directly from the Zariski-Nagata Purity Theorem [N]).
There are more examples of the influence of the branch locus, that is, the
set of ramified prime ideals of S(V ), on the structure of S(V )G. For in-
stance the Grothendieck Purity Theorem for complete intersections [Gr]
shows that if S(V )G is a complete intersection then the branch locus of
S(V ) has codimension ≤ 2, and if it has codimension 2 it is pure. (This
fact was reformulated in [KW], [G1] in the following way: If the algebra
S(V )G is a complete intersection then the group G is generated by elements
g such that rank (g − 1) ≤ 2.) In [G2] it was shown that the homological
dimension of S(V )G can be estimated by the maximal codimension of an
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irreducible component of the branch locus (or in linear group language by
min rank (g − 1), g ∈ G, g 6= 1.)

Recently, the second author [K1, 2] gave formulas which allow to estimate
(and sometimes to calculate) the depth of the algebra S(V )G in the case
when the ground field K has characteristic which divides |G|. (If char K
does not divide |G| then depth S(V )G = dim V .) These estimates were
obtained by using heights of annihilators of non-zero elements of cohomology
groups Hq(G,S(V )) and the number r = min {q > 0 | Hq(G,S(V )) 6= 0}. In
[LP] some of these result were extended to more general extensions B/A. In
particular, these estimates imply that if S(V )G is a Cohen-Macaulay algebra
and G is a p-group where p = char K, then G = 〈g | rank (g − 1) ≤ 2〉.
(This is reminiscent of the situation of complete intersections as invariant
algebras.) This result can also be reformulated in the language of branch
loci. Thus, at least in the case of p-groups, one can see again the dependence
of properties of invariant algebra on properties of the branch locus. (The
results [K1, 2] show that in the “mixed case”: p | |G|, |G| 6= pk, the situation
is much more complicated.)

This paper is devoted to a generalization of the results [K1, 2], with
emphasis on connections with the branch locus. Namely, we consider the
case where B is a finitely generated Cohen-Macaulay domain over a field
K of characteristic p. Suppose that the wild ramification locus Xwr in
X = SpecB is non-empty. Then we obtain:

depthA ≤ dimXwr + 2|Gp|,

where Gp ≤ G is a Sylow p-subgroup (see Corollary 5.12). If we are in
the standard situation B = S(V ), then with k := dimA − depthA + 2 we
obtain that G is generated by elements of order not divisible by char(K) and
by k-reflections (as defined at the beginning of Section 5.1). In fact, we get
slightly more technical results for a more general situation (see Theorems 5.5
and 5.9).

We obtain stronger results in the case where B is a normal Cohen-
Macaulay algebra and G is a p-group. In fact,

depth A ≤ dimA− cs + 2,

where cs is maximum of codimensions of all irreducible components of all
branch loci corresponding to extensions B′/A for normal subalgebras A ⊂
B′ ⊂ B (see Theorem 6.1). If again we set k := dimA− depthA+ 2 in this
case, we obtain that every inertia subgroup ofG is generated by k-reflections.

Acknowledgment. We thank the anonymous referee for helpful com-
ments on the paper. In particular, the inequality (1) was brought to our
attention by the referee.
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2. Notation and terminology

2.1. Let A be a commutative ring and M an A-module. Further, let 1 ∈
U ⊂ A be a multiplicative subset. Then we write AU for the corresponding
localization and MU for the AU -module M ⊗A AU . If p is a prime ideal of
A, the symbol Ap means AA\p.

If a is an ideal of A, the symbol V (a) stands for the closed subset in
Spec A of all prime ideals containing a.

If A is a local ring, the symbols Â, M̂ mean the completion of the ring
A and the module M with respect to the m-adic topology (m being the
maximal ideal of A).

The symbol ht(a) stands for the height of the ideal a.
All rings and modules below are supposed to be Noetherian.
A ring is called equidimensional if all its maximal ideals have the same

height. For example, if a finitely generated algebra over a field has no zero-
divisors, then it is equidimensional (see [Eis, Corollary 13.4]).

An equidimensional ring is called geometric if it is a localization (with
respect to any multiplicative set U) of a finitely generated K-algebra without
zero-divisors, where K is a field.

The symbol Fp denotes the prime field of characteristic p.

2.2. Let A ⊂ B be commutative rings. The ring B is called a separable A-
algebra if B is projective as a B⊗AB-module (where the action is given by
(b1 ⊗ b1)(b) = b1bb2) (see [AB]). If φ : B ⊗A B −→ B is the homomorphism
defined by φ(b1⊗ b2) = b1b2 and I = Ann ker φ then the ideal φ(I) is called
the homological or Noetherian different of the extension B/A and denoted
by NB/A. The A-algebra B is separable if and only if NB/A = B (see [AB]).

Now let BG = A, where G is a group of automorphisms of the ring B.
Let p ∈ Spec B. The stabilizer of p in G is written as Gp and the inertia
subgroup as Ip := {g ∈ G | (g − 1)B ⊆ p}.

2.3. Now suppose an A-module M is also an A[G]-module for a finite group
G. Then tr : M −→ MG denotes the trace map. If H ≤ G then trG/H :
MH −→MG denotes the relative trace map.

2.4. Let M be an A[G]-module. We will also consider M as a Z[G]-module.
The corresponding cohomology groups of M as Z[G]-module are written as
Hq(G,M), q ≥ 0, and the homology groups as Hq(G,M), q ≥ 0. Also, we
use Tate cohomology groups (see [AW]): Ĥq(G,M), q ∈ Z which coincide
with Hq(G,M) if q > 0 and with H−q−1(G,M) if q < −2. For q = 0,−1 we
have

Ĥ0(G,M) = MG/tr(M), Ĥ−1 = ker(tr : M/IGM −→MG)

(where IG is the kernel of the map Z[G] −→ Z sending each g ∈ G to 1).
3



3. Some known properties of cohomology groups

3.1. As in 2.3, let A be a commutative ring and M an A[G]-module, where
G is a finite group. We may consider the abelian groups Ĥq(G,M) as
finitely generated A-modules (indeed, these cohomology groups can be de-
fined as cohomology of a complex of Z[G]-modules which are also finitely
generated A-modules and, moreover, all differentials of a this complex are
homomorphisms of A-modules [AW]). Let A′ be a flat A-algebra. Since all
cohomology groups appear in a complex of A-modules we have:

Ĥq(G,M)⊗A A′ = Ĥq(G,M ⊗A A′).

In particular, if U ⊂ A is a multiplicative set we have:

Ĥq(G,M)U = Ĥq(G,MU )

for every q ∈ Z. In particular, this implies that Ĥq(G,MU ) = 0 if and only
if for every c ∈ Ĥq(G,M) there exists and element l ∈ U such that lc = 0.

3.2. For every normal subgroup H of G we have an exact sequence

0 −→ Ĥ1(G/H,MH) −→ Ĥ1(G,M) −→ Ĥ1(H,M)

[AW, Proposition 5.1]. More generally, if Ĥ i(H,M) = 0 for every 1 ≤ i ≤
q − 1 then we have an exact sequence

0 −→ Ĥq(G/H,MH) −→ Ĥq(G,M) −→ Ĥq(H,M)

[AW, Proposition 5.2]. In this case we will identify the group Ĥq(G/H,MH)
with a subgroup of Ĥq(G,M).

3.3. Let p be a prime such that pM = 0. Assume that G is a p-group.
Then the following statements are equivalent:

(i) M is a free Fp[G]-module;
(ii) Ĥq(G,M) = 0 for every q;
(iii) Ĥq(G,M) = 0 for some q

[AW, Proposition 9.1]

3.4. Let p be a prime number and let |G| = pam where (p, m) = 1. Further,
let H ≤ G be a cyclic group of the order p. Then there exists a positive inte-
ger r ≤ 2pa−1(p− 1) and an α ∈ Ĥr(G,Fp) such that resH(α) ∈ Ĥr(H,Fp)
is non-zero (see the proof of Theorem 4.1.3 in [Be]).
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4. The branch locus and the total branch locus

4.1. The branch locus for a finite extension of commutative rings.
Let A ⊂ B be commutative Noetherian rings such that B is finitely gener-
ated as an A-module. Let X = Spec B, Y = Spec A.

Let p ∈ Spec B and p′ = p ∩ A. We say that p is unramified in X/Y

(or in B/A) if Bp/p
′Bp is a field which is a separable extension of the field

Ap′/p
′Ap′ [AB]. Otherwise p is called ramified in X/Y (or in B/A). The

natural morphism π : X −→ Y (or the extension of rings B/A) is called
unramified if X/Y (or B/A) is unramified in every point (prime ideal) of
X (or B), [AG]. The point (prime ideal) p ∈ Y is called ramified in X/Y

(B/A) if Bp/Ap is a ramified extension.
The extension B/A is unramified if and only if B is a separable A-algebra

[AB, Theorem 2.5] (recall that B is supposed to be a finitely generated A-
module), and the prime ideal p is ramified in B/A if and only if NB/A ⊂ p

[AB, Theorem 2.7].
Put

Xr = {p ∈ X | p is ramified in X/Y }.

Note that Xr = V (NB/A) and therefore Xr is a closed subset of X. The set
Xr is called the branch locus of X/Y .

4.2. The branch locus over an invariant ring. Now let A = BG where
G is a finite group of automorphisms. Below we consider only cases where B
is a finitely generated A-module (this always holds if B is a finitely generated
algebra over a field K [Bour, V, 1.9. Theorem 2]).

The ring B is a separable A-algebra if and only if Im = 1 for every
maximal ideal m of B [ChHR, Theorem 1.3]. Now let p ∈ X = Spec B, p′ =
p ∩ A and let p1 = p, p2, . . . , pm be the set of prime ideals of B which lie
over p′. Then the prime ideals p1, . . . , pm are in the same G-orbit [Bour,
V, 2.2. Theorem 2]. Thus for every i = 1, . . . ,m we have Ipi = giIpg

−1
i

for some gi ∈ G. Further, consider the localization Bp′ . The ring Bp′ is
semilocal and the set of maximal ideals of Bp′ consists of images p̃1, . . . , p̃m

of p1, . . . , pm (that is, p̃i = pi⊗AAp′). Obviously, the inertia subgroup Ip̃i of
the extension Bp′/Ap′ coincides with Ipi . Moreover, BG

p′ = Ap′ [Bour, V,1.9.
Proposition 23]. Thus Bp′ is a separable Ap′- algebra if and only if Ip1 = 1.
This implies, in its turn, that the ideal p1 is unramified in B/A if and only
if Ip1 = 1 (see 4.1). Hence Xr = {p ∈ X | Ip 6= 1}. Now let {Xj

r}j be the
set of irreducible components of Xr and let

P1 = {p ∈ Xr | for q ∈ X, q $ p we have Iq = 1}.
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The definition of P1 obviously implies that for every j there exists a prime
ideal p ∈ P1 such that V (p) = Xj

r . Conversely, for every p ∈ P1 the set
V (p) coincides with an irreducible component of Xr.

4.3. Wild ramification. Let pB = 0 for some prime p. We say that the
point (prime ideal) p ∈ X (resp. p ⊂ B) is wildly ramified in X/Y (resp.
in B/A) if p | |Ip|. The set of all wildly ramified points in X is written as
Xwr. B/A is said to be wildly ramified if Xwr 6= ∅.

Let

P1
w = {p ∈ Xwr | if q $ p then q /∈ Xwr}.

Obviously,

Xwr =
⋃

p∈P1
w

V (p).

Moreover, the definitions of P1, Xwr, Ip imply that P1 is a finite set, Xwr is
the closed subset of X and {V (p)}p∈P1 is the set of irrducible components
of Xwr.

4.4. The total branch locus. Again we assume that A = BG, the group
G is finite, and B is finitely generated as an A-module. Put

B̃ =
∏
H≤G

BH and X̃ = Spec B̃,

X̃r = {p ∈ X̃ | p is ramified in X̃/Y }.

The affine scheme X̃ is the disjoint union of irreducible components which
can be identified with Spec BH . The set X̃r = V (NB̃/A) is a closed subset

of X̃. We call the set X̃r, which is the branch locus of X̃/Y , also the total
branch locus of X/Y .

We define:

P0 = {p ∈ Xr | Ip 6= 〈Iq | q ∈ X, q $ p〉}.

We clearly have the inclusions P1 ⊆ P0.

Remark 4.1. Notice that in the case B = S(V ), G ≤ GL(V ), |G| =
pk, p = char K (where K is a ground field) a prime ideal p ∈ Spec B lies
in P0 if and only if Ip is shallow in the sense of [CHKSW]. In this case the
depth of BIp is equal to min

{
dim(V Ip) + 2,dim(V )

}
[CHKSW].

Let {X̃i
r}i be the set of irreducible components of X̃r.

Proposition 4.2. Suppose B is a normal geometric ring. Then for every i
there exists a prime ideal p ∈ P0 and a subgroup H ≤ G such that

V (p′) = X̃i
r,
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where p′ = p ∩ BH (here we consider V (p′) as a closed subset of Spec BH ;
recall that we identify irreducible components of X̃ with sets of the form
Spec BH).

Conversely, for every p ∈ P0 there exists a subgroup H ≤ G such that
V (p′) coincides with an irreducible component of X̃r (here p′ = p ∩BH and
V (p′) ⊂ Spec BH).

Proof. We need the following lemmas.

Lemma 4.3. Let E/F be an extension of Noetherian rings such that E is a
finitely generated F -module. Further, let q ∈ Spec E, q′ = q ∩ F . The ideal
q is unramified in E/F if and only if qÊq is unramified in Êq/F̂q′.

Proof. This can be checked by routine considerations of residue fields and
maximal ideals of the corresponding rings and their completions. �

Lemma 4.4. Let F ⊂ T ⊂ E be normal geometric rings such that E is
finitely generated as an F -module. Further, let p ∈ Spec E, q = p ∩ T , and
r = q ∩ F . Then the ideal p is unramified in E/F if and only if the ideal p

is unramified in E/T and the ideal q is unramified in T/F .

Proof. Lemma 4.3 implies that the assertion of the lemma can be reduced
for the case of complete local rings F̂r ⊂ T̂q ⊂ Êp. Note that all rings in
this sequence are normal because they are completions of normal geometric
rings [N, 37.5]. Moreover, Êp is finitely generated as an F̂r-module. Further,
if S/R is an extension of Noetherian rings such that S is a local ring and
a finitely generated R-module, then this extension is unramified if and only
if the maximal ideal of S is unramified in S/R [AB, Theorem 2.5]. Since
all rings in the sequence F̂r ⊂ T̂q ⊂ Êp are local and normal the assertion
follows from [AB, Theorem A.2]. �

In the next lemma we maintain the notation of the Proposition.

Lemma 4.5. Let H ≤ G and let p ∈ X, q = p ∩ BH . Then the ideal q is
unramified in BH/A if and only if Ip ≤ H.

Proof. Suppose that Ip ≤ H. Put r = p ∩ BIp . The ideal r is unramified in
BIp/A [N, 41.2]. Hence q is unramified in BH/A by Lemma 4.4.

Suppose H0 = Ip ∩H 6= Ip. Put s = p ∩ BH0 . The ideal s is unramified
in BH0/BH [N, 41.2]. Assume that q is unramified in BH/A. Then, by
Lemma 4.4, s is unramified in BH0/A and therefore (again by Lemma 4.4)
the ideal s is unramified in BH0/BGp . Then the degree of the maximal sepa-
rable extension of Ap′/p

′Ap′ (where p′ = p∩A) which is contained in Bp/pBp

is greater that or equal to [Gp : H0] and, therefore, this degree exceeds
[Gp : Ip]. But it should be equal to [Gp : Ip] [Bour, V. 2.2, Proposition 5].
Hence we get a contradiction and therefore q is ramified in BH/A. �
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Now we return to the proof of the Proposition.
The definition of X̃ implies that every closed irreducible subset of X̃ has

the form V (p′) ⊂ Spec BH for some H ≤ G and some prime ideal p′ of BH .
Now let X̃i

r = V (p′) and let p be a prime ideal of B such that p′ = p ∩BH .
We have to show that p ∈ P0. The definition of the ideal p′ implies that p′

is ramified in BH/A. Thus Ip 6⊂ H by Lemma 4.5. Suppose Iq 6⊂ H for some
q $ p. Then the ideal q′ = q∩BH is ramified in BH/A (by Lemma 4.5) and
therefore the closed irreducible subset V (q′) of Spec BH is contained in X̃r.
But V (p′) $ V (q′). This is a contradiction to the choice of p′. Thus Iq ⊆ H
for every q $ p and therefore Ip 6= 〈Iq | q $ p〉. Thus p ∈ P0.

Now let p ∈ P0. Put H = 〈Iq | q $ p〉. Let p′ = p∩BH . Since Ip 6⊂ H,
the prime ideal p′ is ramified in BH/A and therefore the closed irreducible
subset V (p′) of Spec BH belongs to X̃r. The definition of H implies that for
every prime ideal q $ p the corresponding ideal q′ = q ∩ BH is unramified
in BH/A. Thus the set V (p′) coincides with an irreducible component of
X̃. �

Define
cs(X̃r) = sup {codim X̃i

r}i.

Proposition 4.6. If B is a geometric normal ring then

cs(X̃r) = sup {ht(p) | p ∈ P0}.

Proof. This follows from Proposition 4.2. �

5. The Cohen-Macaulay defect for actions on Noetherian

rings

Let A be a commutative Noetherian ring. We define the Cohen-Macaulay
defect as

cmdef A := sup{dimAp − depthAp | p ∈ SpecA}.

If A is a geometric ring we define

depthA := inf{depthAm | m ⊂ A maximal ideal}.

Remark 5.1. A few remarks should be made why these definitions make
sense.

(1) Clearly A is Cohen-Macaulay if and only if cmdef A = 0.
(2) Lemma 5.2 below shows that we only need to consider maximal ideals

of A in the definition of cmdef A. Hence if A is a geometric ring,
then cmdef A = dimA− depthA.

(3) If A is a graded domain with a field as the degree-0 part or a Noe-
therian local ring, then

cmdef A = dimA− depthA,
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where depthA is defined (as usual) to be grade(m, A) with m the
maximal (homogeneous) ideal (see Lemma 5.2 below for A local and
[K4, Satz 5.4] for A graded).

Lemma 5.2. Let A be a Noetherian ring and p, q ∈ SpecA with p ⊆ q.
Then

dimAq − depthAq ≥ dimAp − depthAp.

Proof. We need to show the following: If R is a Noetherian local ring and
p ∈ SpecR, then

dimR− depthR ≥ dimRp − depthRp.

But this follows directly from the inequality

(1) depthR ≤ depthRp + dimR/p

(see [VW, Proposition 3.4]). �

Lemma 5.3. Let B a Noetherian commutative ring, G a finite group of
automorphisms of B and A = BG. For a prime ideal p ∈ SpecB set q :=
A ∩ p ∈ SpecA. Then ht(q) = ht(p).

Proof. Take a chain
p0 $ p1 $ · · · $ pk = p

of prime ideals in B. Then qi := A ∩ pi gives an increasing chain in SpecA,
and the inclusions are strict by [Bour, V., 2.1., Corollary 1]. Thus ht(q) ≥
ht(p).

For the reverse inequality, take a chain

q0 $ q1 $ · · · $ qk = q

with qi ∈ SpecA. Starting with pk = p, we construct a descending chain
of prime ideals pi ∈ SpecB with A ∩ pi = qi. Suppose pi has already been
constructed. By [Bour, V., 2.1., Theorem 1 and Corollary 2] there exists
p′i−1 ∈ SpecB with A ∩ p′i−1 = qi−1, and there exists p′i ∈ SpecB such that
A ∩ p′i = qi and p′i−1 ⊆ p′i. Hence p′i and pi both lie over qi. By [Bour,
V., 2.2., Theorem 2] this implies pi = g (p′i) with g ∈ G. Now we take
pi−1 := g

(
p′i−1

)
and obtain A ∩ pi−1 = qi−1 and pi−1 ⊆ pi, as desired. The

inclusion is strict since this holds for the inclusion of qi−1 in qi. �

The following lemma is known and the statement holds in a more general
situation (see [LP]).

Lemma 5.4. Let B be a commutative ring, G a finite group of automor-
phisms of B and N E G a normal subgroup. Then for p ∈ SpecB we have

trG/N (BN ) ⊆ p ⇐⇒ [Ip : N ∩ Ip] ∈ p.

Proof. [LP, Lemma 1.1]. �
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5.1. Reflections. Let g be an automorphism of a Noetherian commutative
ring. We say that g is a k-reflection (for a non-negative integer k) if there
exists a p ∈ SpecB with ht(p) ≤ k such that g ∈ Ip. Thus in the special case
where V is a finite-dimensional vector space, g ∈ GL(V ), and B = S(V ), g
is a 1-reflection if it is the identity or a pseudo-reflection in the usual sense.

Theorem 5.5. Let B be a Noetherian Cohen-Macaulay ring containing the
prime field Fp, and let G be a finite group of automorphisms of B. Suppose
A := BG is Noetherian and set k := cmdef(A) + 2. Let N ≤ G be the
subgroup generated by all k-reflections and all elements of order not divisible
by p, and assume that BN is also Noetherian. Then BN/A is unramified.
In particular, if G = Ip for a p ∈ SpecB, then N = G.

Proof. Assume that BN/A is ramified. Observe that N is normal in G.
Since A =

(
BN
)G/N and G/N is a p-group, Lemma 5.4 tells us that I :=

trG/N (BN ) 6= A. This means that Ĥ0
(
G/N,BN

)
6= 0 (see Section 2.4),

hence Ĥ1
(
G/N,BN

)
6= 0 by (3.3). Pick a β ∈ Ĥ1

(
G/N,BN

)
\ {0}. The

inflation map inf : Ĥ1
(
G/N,BN

)
→ Ĥ1(G,B) is injective (3.2), hence α :=

inf(β) 6= 0. By [K3, Corollary 2.4], I ⊆ AnnA(α), and hence Corollary 1.6
in [K1] (which uses the hypothesis that B is Cohen-Macaulay) yields

grade(I, A) ≤ 2.

Here the grade means the maximal length of an A-regular sequence with
elements in I. By [BH, Proposition 1.2.10.(a)] there exists a q ∈ SpecA
with I ⊆ q such that depthAq = grade(I,A). Thus

(2) depthAq ≤ 2.

Let p ∈ SpecB be a prime ideal lying over q. Then I ⊆ p, and since I is the
relative trace ideal we obtain by Lemma 5.4 that there exists a g ∈ Ip \N .
By the definition of N we obtain ht(p) > k. Thus ht(q) > k by Lemma 5.3.
Combining this with (2) yields

dimAq − depthAq > k − 2 = cmdef A,

a contradiction.
Hence BN/A must be unramified. If in addition G = Ip for p ∈ SpecB,

then N = G by Lemma 4.5. �

Remark 5.6. Since BN/A is unramified if and only if the relative trace
map trG/N is surjective (Lemma 5.4), Theorem 5.5 is a generalization of
Corollary 4.3 in [LP].

For linear actions of p-groups the following corollary is a direct conse-
quence of Theorem 5.5.
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Corollary 5.7. If G ≤ GL(V ) is a p-group acting linearly on a finite-
dimensional vector space V over a field K of characteristic p and B = S(V ),
then G is generated by k-reflections, where k = dimV − depthBG + 2.

5.2. A bound on the Cohen-Macaulay defect and vector invariants.

Proposition 5.8. Let B be a commutative ring containing Fp, let G be a
finite group of automorphisms of B and write A = BG. If B/A is wildly
ramified, then there exists an integer r with 0 < r < 2|Gp|, where Gp ≤ G

is a Sylow p-subgroup, such that

Ĥr(G,B) 6= 0.

Proof. From the wild ramification we have a p ∈ SpecB such that p divides
|Ip|, so there exists a cyclic subgroup H ⊆ Ip of order p. By (3.4) there
exists a positive integer r < 2|Gp| and an α ∈ Ĥr(G,Fp) such that res(α) ∈
Ĥr(H,Fp) is non-zero. The composition of the natural maps Fp → B → B/p

is an injective Fp[H]-homomorphism. Since B/p is trivial as a Fp[H]-module,
the composition induces an injective map Ĥr(H,Fp)→ Ĥr(H,B/p). There-
fore the natural map ϕ : Ĥr(H,Fp) → Ĥr(H,B) is also injective. Hence
ϕ(res(α)) 6= 0, but this is the same as first mapping α into Ĥr(G,B) and
then restricting to H. The result follows. �

For a non-empty Zariski-closed subset Z ⊆ X := SpecB we write ht(Z) :=
inf{ht(p) | p ∈ Z}. If Z is empty we set ht(Z) = −∞.

Theorem 5.9. Let B be a Noetherian Cohen-Macaulay ring containing Fp
and let G be a finite group of automorphisms of B. Assume that A := BG

is Noetherian and r is a positive integer with Ĥr(G,B) 6= 0. Then

cmdef A ≥ ht(Xwr)− r − 1,

where Xwr is the wild ramification locus in X = SpecB. In particular,

cmdef A ≥ ht(Xwr)− 2|Gp|,

where Gp ≤ G is a Sylow p-subgroup.

Proof. We may assume that r is minimal positive with Ĥr(G,B) 6= 0.
Choose a non-zero element α ∈ Ĥr(G,B). Corollary 2.4 in [K3] says that
I := tr(B) ⊆ AnnA(α). By [K1, Corollary 1.6] we have

grade(I, A) ≤ r + 1.

I is a proper ideal, thus by [BH, Proposition 1.2.10(a)] there exists q ∈
SpecA with I ⊆ q and grade(I, A) = depthAq. We obtain

(3) cmdef A ≥ dimAq − depthAq ≥ ht(q)− r − 1.

Choose a p ∈ SpecB with A∩p = q. Then ht(p) = ht(q) by Lemma 5.3. But
I ⊆ p implies p ∈ Xwr (see Lemma 5.4), hence ht(p) ≥ ht(Xwr). Putting
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this together with (3) yields the first result. The second result now follows
from Proposition 5.8. �

We want to get a special version of Theorem 5.9 which does not use
the somewhat technical concepts of the Cohen-Macaulay defect and height.
We need the following Lemma, which is a compilation of [Bour, V, 1.9,
Theorem 2 and Proposition 23].

Lemma 5.10. Let S be a finitely generated algebra over a Noetherian ring
R and let B = SU be the localization with respect to a multiplicative subset
U ⊂ S. Suppose that G is a finite group of automorphisms of B which fix
the image of R in B pointwise. Then A := BG can also be obtained by
localizing a finitely generated R-algebra. Moreover, B is finitely generated
as an A-module.

In the above lemma A is Noetherian. However, it is not always true that
the invariant ring RG under a finite group of automorphisms of a Noetherian
ring R is also Noetherian. For counter examples, see [M, Example 5.5].

Lemma 5.11. Let B be a geometric ring over K and let G be a finite group
of K-automorphisms of B. Then A := BG is also geometric and B is finitely
generated as an A-module.

Proof. We only have to show that A is equidimensional since everything else
is already contained in Lemma 5.10. So let m1 and m2 be two maximal ideals
in A. Choose m′i ∈ SpecB lying over mi. Then the m′i are maximal, hence
ht(m′1) = ht(m′2). By Lemma 5.3 it follows that m1 and m2 have the same
height. �

Corollary 5.12. Let B be a geometric Cohen-Macaulay ring over a field K
of characteristic p and let G be a finite group of K-automorphisms of B. If
the wild ramification locus Xwr in X := SpecB is non-empty, then

depthBG ≤ dim(Xwr) + 2|Gp|,

where Gp ≤ G is a Sylow p-subgroup.

Proof. From Theorem 5.9 we have cmdef A ≥ ht(Xwr) − 2|Gp|, where A =
BG. By Lemma 5.11 and Remark 5.1(b) we have cmdef A = dimA −
depthA, hence

(4) depthA ≤ dimA− ht(Xwr) + 2|Gp|.

Since B is catenary (i.e., all maximal chains of prime ideals between two
given prime ideals have equal length) and all maximal ideals have the same
height we have dim(B/I) + ht(I) = dim(B) for any proper ideal I in B. In
particular, ht(Xwr) = dimB − dimXwr. Moreover, dimA = dimB since
B is finite as an A-module. Combining this with (4) yields the required
bound. �

12



If G acts linearly on a vector space V , one can (and often does) consider
invariants of the G-action on the n-fold direct sum V n of V . The following
corollary is about a slightly more general situation, where the action of G
need not be linear. Observe that S(V n) ∼= S(V )⊗n.

Corollary 5.13. Let B be a polynomial ring over a field K and let G be a
finite group of K-automorphisms of B. If B/BG is wildly ramified, then

lim
n→∞

cmdef
(
B⊗n

)G =∞.

Here G acts diagonally on the tensor power.

Remark 5.14. If in the situation of Corollary 5.13 B/BG is not wildly
ramified, then B⊗n/ (B⊗n)G is not wildly ramified, either, and it follows
from [K3, Theorem 2.10] and [K1, Theorem 1.4] that (B⊗n)G is Cohen-
Macaulay, so in this case

cmdef
(
B⊗n

)G = 0

for every n. An example of this type is given by an action generated by a
translation which maps some indeterminate xi of B to xi + 1.

Proof of Corollary 5.13. Corollary 5.12 yields

(5) cmdef
(
B⊗n

)G ≥ nm− dim (Xn
wr)− 2|Gp|,

where m = dimB, Xn = SpecB⊗n, and Gp ≤ G is a Sylow p-subgroup.
Consider the algebraic set Y ⊆ K̄m (with K̄ an algebraic closure of K) given
by the ideal in B defining the wild ramification locus Xwr. For x ∈ K̄m

we have x ∈ Y if and only if p divides |Gx|. The variety Yn ⊆ (K̄m)n

corresponding to Xn
wr is clearly contained in Y n, the n-fold cartesian product

of Y . Thus dimYn ≤ n dimY . It follows that

(6) dimXn
wr = dimYn ≤ n dimY.

But dimY < m since no element σ ∈ G of order p fixes all of K̄m. Substi-
tuting (6) into (5) yields the theorem. �

Corollary 5.15. Let G be a finite group acting faithfully and linearly on
a finite dimensional vector space V over a field of characteristic p, which
divides |G|. Then

lim
n→∞

cmdef S(V n)G =∞.

6. The depth of invariants of normal geometric rings with

respect to a p-group

In the case when B is a normal geometric ring and G is a p-group we have

Theorem 6.1. Let B be a normal geometric Cohen-Macaulay ring, char B =
p 6= 0. Further, let BG = A where |G| = pk for some k. Then

depth A ≤ dimA− cs(X̃r) + 2.
13



Remark 6.2. Recall cs(X̃r) = sup {codim X̃i
r}i where {X̃i

r}i is the set of
irreducible components of X̃r. We can consider the set {Xj

r}j of irreducible
components of Xr as a subset of {X̃i

r}i. Hence dimA − cs(X̃r) ≤ dimA −
inf {codim Xj

r}j = dimA− ht(Xr) = dim Xr. Note that in the case | G |=
pk we have Xr = Xwr and r = min{q | Ĥq(G,B) 6= 0} = 1. Thus, in the
case considered here, the inequality of Theorem 6.1 implies 5.9 and 5.12.

Proof of Theorem 6.1. We need the following

Lemma 6.3. Let p ∈ P0, and set C = BGp and q = p ∩ C. Suppose
ht(p) ≥ 2. Then

depth Cq = 2.

Proof. Put k = cmdef Cq + 2. Let

N = 〈Ir | r ⊆ p, ht(r) ≤ k〉.

Then N is a normal subgroup of Gp and, according to Theorem 5.5, the
extension BN

p /Cq is unramified. Thus Ip = N by Lemma 4.5. Now the
definition of P0 implies ht(p) ≤ k. Thus,

k = dim Cq − depth Cq + 2 ≥ dim Cq = ht(q)

and, therefore, depth Cq ≤ 2. The reverse inequality follows since ev-
ery normal Noetherian ring satisfies Serre’s condition (S2) (see [BH, Theo-
rem 2.2.22]). �

Lemma 6.4. Let p ∈ P0 and let p′ = p ∩A. If ht (p′) ≥ 2 then

depth Ap′ = 2.

Proof. We maintain the notation of the proof of the previous Lemma.
Let us show

(7) Ĉq = Âp′ .

Note that Ĉq is a finitely generated Âp′-module. Indeed, B is a finitely
generated A-module [N, 10.16]. Hence B ⊗A Âp′ is a finitely generated Âp′-
module. But

B ⊗A Âp′ =
s∏
i=1

B̂pi ,

where p1 = p, . . . , ps are prime ideals of B which lie over p′ [N, 17.7]. Hence
B̂p is a finitely generated Âp′-module. Since Ĉq is an Âp′-submodule of the
Âp′-module B̂p, it is also finitely generated.

Further, the ideal q is unramified in C/A [N, 41.2]. Hence, by Lemma 4.3,
the extension Ĉq/Âp′ is unramified. Since, in addition, the Âp′-module Ĉq is
finitely generated, it is a free module [AB, Proposition 4.5]. Hence Ĉq/p

′Ĉq is
a finite separable extension of Âp′/p

′Âp′ , and the dimension of this extension
14



is equal to rank
Âp′

Ĉq. But this dimension is equal to 1 [N, 41.2] and,
therefore, we have (7).

Further,

(8) depth Ap′ = depth Âp′ , depth Cq = depth Ĉq

[S, IV, A.4. Proposition 9].
Now the assertion of the Lemma follows from (7), (8) and the previous

Lemma. �

Now we can finish the proof of Theorem 6.1.
Since B is a normal geometric ring, the ring A and its localizations are

also geometric by Lemma 5.11. Hence for every maximal ideal m′ of A, the
ring Am′ is a factor ring of a regular local ring. Thus, if p′ ⊂ m′, we have

(9) cmdef Ap′ ≤ cmdef Am′

(Lemma 5.2). Since dimAm′ = dim A and dim Ap′ = ht (p), the assertion
of the Theorem follows from (9), Lemma 6.4 and Proposition 4.6. �

Corollary 6.5. Let the notation and assumptions of Theorem 6.1 hold.
Then all inertia subgroups of G are generated by k-reflections, where k =
dimA− depth A+ 2.

Proof. By way of contradiction, assume that there exists p ∈ X such that
Ip 6= 〈Iq | Iq ⊆ Ip,ht(q) ≤ k〉. We can choose p minimal with this property.
Then for q ∈ X with q $ p we have Iq = 〈Iq′ | Iq′ ⊆ Iq,ht(q′) ≤ k〉. Since
Iq ⊆ Ip, this implies p ∈ P0. Since ht(p) > k, Theorem 6.1 leads to the
contradiction

depthA < dimA− k + 2 = depthA.

�

Corollary 6.6. Let the notation and assumptions of Theorem 6.1 hold.
Suppose that A is a Cohen-Macaulay ring. Then all inertia subgroups of G
are generated by 2-reflections.

Proof. This is a special case of Corollary 6.5. �

Corollary 6.7. Let the notation and assumptions of Theorem 6.1 hold.
Suppose that B = S(V ) is the symmetric algebra of a linear space V and
suppose the ideal (V )2 generated by squares of linear forms is G-invariant
(in particular, this holds if the G-action can be induced by a linear action
on V ). Then the group G as well as all inertia subgroups are generated by
elements g ∈ G such that

dim(g − 1)V (mod(V )2) ≤ dimA− depthA+ 2.
15



If, in addition, A is a Cohen-Macaulay algebra Then the group G as well as
all inertia subgroups are generated by elements g ∈ G such that

dim(g − 1)V (mod(V )2) ≤ 2.

Proof. Let p be a prime ideal of B of the height h. Then the image of the
natural map p −→ (V )/(V )2 is a linear subspace which has dimension ≤ h.
Also, note that in this case the whole group G is the inertia subgroup of
(V ). �
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