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For the purposes of [K] and [KM] it became necessary to have 7 × 7 matrix generators for a
Sylow-3-subgroup of the Ree groups 2G2(q) and its normalizer. For example in [K] we used the
matrices produced here to show that in a seven dimensional representation the Jordan canonical
form of any element of order nine is a single Jordan block of size 7. In [KM] we develop group
recognition algorithms where at some stage we need to identify a certain subset of group elements
with the Sylow-3-subgroup of 2G2(q). This identification is most easily done using the faithful
matrix representation of small dimension given below. The process of producing low dimensional
matrix representations for classical groups in defining characteristic is generally well understood.
For exceptional groups of Lie type this does not appear to be true. For example on page 247,
Carter [C] writes that we lack a matrix representation of conveniently small degree for the groups
G2(q); the untwisted exceptional groups of lowest possible rank. The twisted exceptional groups
of BN-pair rank 1 are the groups of type 2B2(q) and 2G2(q). Explicit matrix generators for the
groups of type 2B2(q) are given in Chapter XI, § 3 of [BH], leaving the groups 2G2(q) as the only
groups of BN-pair rank 1 for which there does not exist an explict matrix repesentation in defining
characteristic in the literature. Here we give matrix generators for two distinct Sylow-3-subgroups of
2G2(q), thereby providing generators for the whole group. Starting with the Steinberg generators for
a seven dimensional representation of G2(q) we construct our matrices following Carter [C], chapters
12 and 13. The matrices for the Steinberg generators of G2(q) were computed with the help of a
computer program developed by the second author [L].

For our setup we let G = G2(K), where K is the algebraic closure of a finite field of characteristic
3. Let F a Frobenius endomorphism of G whose set of fixed points GF is a Ree group of type
2G2(q), q = 32m+1. Let T be an F -invariant maximal torus of G, and let B and B− be F -invariant
Borel subgroups intersecting in T with unipotent radicals U respectively U−. By N we denote the
normalizer NG(T ). Let Φ be the root system of G with respect to T and {a, b} its base given by
B, where a is a short and b a long root. Now U respectively U− is generated by subgroups Xr

respectively X−r, where r ∈ Φ+ (the set of positive roots). The groups Xr are isomorphic to the
additive group of the field K. We denote the elements of Xr by Xr(t) where t ∈ K.

The reductive group G has an irreducible 7-dimensional representation over K (with highest
weight (1, 0)) which can be found as follows: In characteristic 3, the 14-dimensional adjoint rep-
resentation V of G has a 7-dimensional irreducible submodule. This submodule is spanned by
those elements of the Chevalley basis of V which are labeled by short roots. The restriction of this
representation to 2G2(q) remains irreducible.
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The second author has implemented a computer program which computes for an arbitrary Cheval-
ley group explicit matrices for the root elements Xr(t) in its adjoint representation with respect to
a Chevalley basis. Using this for type G2, we obtain the images of the Xr(t) in the 7-dimensional
representation with high weight (1, 0) by cutting out the appropriate 7× 7-blocks of the Xr(t). (By
abuse of notation we also denote these images by Xr(t) in the sequel.)

These programs use the computer algebra packages GAP [GAP] and CHEVIE [GHLMP]. They
work along the construction of the Chevalley groups as explained in Carters book [C]. It is planned
to make them available to interested users as part of a larger package [L] for computing characters
and highest weight representations of reductive groups.

The following list gives the matrices Xr(t) for G. The reader can check that they satisfy the
Steinberg relations [C] 12.2.1, where the structure constants are chosen as in the table on page 211
of [C]. (We denote zero entries by dots.)

Xa(t) =



1 t . . . . .
. 1 . . . . .
. . 1 t 2t2 . .
. . . 1 t . .
. . . . 1 . .
. . . . . 1 2t
. . . . . . 1

 , X−a(t) =



1 . . . . . .
t 1 . . . . .
. . 1 . . . .
. . 2t 1 . . .
. . 2t2 2t 1 . .
. . . . . 1 .
. . . . . 2t 1

 ,

Xb(t) =



1 . . . . . .
. 1 t . . . .
. . 1 . . . .
. . . 1 . . .
. . . . 1 2t .
. . . . . 1 .
. . . . . . 1

 , X−b(t) =



1 . . . . . .
. 1 . . . . .
. t 1 . . . .
. . . 1 . . .
. . . . 1 . .
. . . . 2t 1 .
. . . . . . 1

 ,

Xa+b(t) =



1 . 2t . . . .
. 1 . t . 2t2 .
. . 1 . . . .
. . . 1 . t .
. . . . 1 . t
. . . . . 1 .
. . . . . . 1

 , X−a−b(t) =



1 . . . . . .
. 1 . . . . .

2t . 1 . . . .
. 2t . 1 . . .
. . . . 1 . .
. 2t2 . 2t . 1 .
. . . . t . 1

 ,

X2a+b(t) =



1 . . 2t . . 2t2

. 1 . . 2t . .

. . 1 . . t .

. . . 1 . . 2t

. . . . 1 . .

. . . . . 1 .

. . . . . . 1

 , X−2a−b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
t . . 1 . . .
. 2t . . 1 . .
. . t . . 1 .

2t2 . . t . . 1

 ,

X3a+b(t) =



1 . . . 2t . .
. 1 . . . . .
. . 1 . . . t
. . . 1 . . .
. . . . 1 . .
. . . . . 1 .
. . . . . . 1

 , X−3a−b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
. . . 1 . . .

2t . . . 1 . .
. . . . . 1 .
. . t . . . 1

 ,
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X3a+2b(t) =



1 . . . . 2t .
. 1 . . . . t
. . 1 . . . .
. . . 1 . . .
. . . . 1 . .
. . . . . 1 .
. . . . . . 1

 , X−3a−2b(t) =



1 . . . . . .
. 1 . . . . .
. . 1 . . . .
. . . 1 . . .
. . . . 1 . .

2t . . . . 1 .
. t . . . . 1

 .

With our choice of structure constants the automorphism F has a particularly nice form. Let
π be the involution on Φ which permutes ±a and ±b, ±(a + b) and ±(3a + b), and ±(2a + b) and
±(3a+ 2b). Let θ = 3m. Now

F (Xr(t)) = Xπ(r)(tλ(π(r))θ),

where λ(π(r)) is 1 if π(r) is short and 3 if π(r) is long, see for example Proposition 12.4.1 of [C] and
the discussion on page 225.

Now every element of U is of the form

Xa(t1)Xb(t2)Xa+b(t3)X2a+b(t4)X3a+b(t5)X3a+2b(t6)

with unique elements t1, . . . , t6 ∈ K. Following the proof of [C] Proposition 13.6.3(vii) we confirm,
using the computer program Maple, that

F (Xa(t1)Xb(t2)Xa+b(t3)X2a+b(t4)X3a+b(t5)X3a+2b(t6)) =
Xb(t3θ1 )Xa(tθ2)X3a+b(t3θ3 )X3a+2b(t3θ4 )Xa+b(tθ5)X2a+b(tθ6) = Xa(tθ2)Xb(t3θ1 ) ·
Xa+b(t3θ1 t

θ
2 + tθ5)X2a+b(t3θ1 t

2θ
2 + tθ6)X3a+b(−(t1t2)3θ + t3θ3 )X3a+2b(−t6θ1 t3θ2 + t3θ4 ).

Comparing the coefficients of the factors and using that for x ∈ K we have x3θ2
= xq = x iff

x ∈ Fq, we get the parametrization of the F -stable elements of U .
Set t = t2, u = t5 and v = t6. Then UF = {xS(t, u, v) | t, u, v ∈ Fq}, where

xS(t, u, v) =



1 tθ −uθ (tu)θ − vθ f1(t, u, v) f2(t, u, v) f3(t, u, v)
. 1 t uθ + tθ+1 −t2θ+1 − vθ f4(t, u, v) f5(t, u, v)
. . 1 tθ −t2θ vθ + (tu)θ f6(t, u, v)
. . . 1 tθ uθ (tu)θ − vθ
. . . . 1 −t uθ + tθ+1

. . . . . 1 −tθ

. . . . . . 1


with

θ = 3m,
f1(t, u, v) = −u− t3θ+1 − (tv)θ,
f2(t, u, v) = −v − (uv)θ − t3θ+2 − tθu2θ,

f3(t, u, v) = tθv − uθ+1 + t4θ+2 − v2θ − t3θ+1uθ − (tuv)θ,
f4(t, u, v) = −u2θ + tθ+1uθ + tvθ,

f5(t, u, v) = v + tu− t2θ+1uθ − (uv)θ − t3θ+2 − tθ+1vθ,

f6(t, u, v) = u+ t3θ+1 − (tv)θ − t2θuθ.
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Using this we confirm, see [C] on page 236, that the group law for UF is as follows:

xS(t1, u1, v1)xS(t2, u2, v2) = xS(t1 + t2, u1 + u2 − t1t3θ2 , v1 + v2 − t21t3θ2 − t2u1 + t1t
3θ+1
2 ).

Replacing positive roots by negative roots and proceeding as above we get that U−
F =

{x′S(t, u, v) | t, u, v ∈ Fq}, where

x′S(t, u, v) =



1 . . . . . .
tθ 1 . . . . .

tθ+1 − uθ t 1 . . . .
(tu)θ + vθ −uθ −tθ 1 . . .
g1(t, u, v) (tu)θ − vθ −t2θ −tθ 1 . .
g2(t, u, v) g3(t, u, v) t2θ+1 + vθ tθ+1 − uθ −t 1 .
g4(t, u, v) g5(t, u, v) g6(t, u, v) (tu)θ + vθ uθ −tθ 1


with

θ = 3m,
g1(t, u, v) = t3θ+1 + t2θuθ − (tv)θ − u,
g2(t, u, v) = t3θ+2 + tθ+1vθ − uθt2θ+1 − (uv)θ + tu− v,
g3(t, u, v) = −tθ+1uθ − u2θ + tvθ

g4(t, u, v) = t4θ+2 + uθt3θ+1 + (tuv)θ − v2θ − uθ+1 + tθv,

g5(t, u, v) = t3θ+2 + tθu2θ − (uv)θ + v,

g6(t, u, v) = −t3θ+1 − (tv)θ + u.

Here the group law is as follows:

x′S(t1, u1, v1)x′S(t2, u2, v2) = x′S(t1 + t2, u1 + u2 + t1t
3θ
2 , v1 + v2 − t21t3θ2 + t2u1 + t1t

3θ+1
2 ).

We note that the form of the group law in UF differs from that of U−F by two minus signs. We
also remark here that if we let our matrices Xr(t) act on the right, rather than on the left, then the
form of the group law for UF changes to that of U−F and vice versa.

Following [C] Lemma 12.1.1 we define nr(t) as Xr(t)X−r(−t−1)Xr(t) and hr(t) = nr(t)nr(−1).
Now every element of T is of the form ha(t1)hb(t2). Then by Lemma 13.7.1 we have
F (ha(t1))F (hb(t2)) = hb(t3θ1 )ha(tθ2). So by Theorem 13.7.4 an element of T is F -invariant iff
t1 = tθ2 and t2 = t3θ1 ; i.e. all the ha(t)hb(t3θ), where t ∈ Fq, are invariant. Let t = t1, then
TF = {h(t) | t ∈ F ∗q }, where

h(t) =



tθ . . . . . .
. t1−θ . . . . .
. . t2θ−1 . . . .
. . . 1 . . .
. . . . t1−2θ . .
. . . . . tθ−1 .
. . . . . . t−θ


.
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Finally we note that NF is generated by TF and the matrix

n := na+b(1)n3a+b(1) =



. . . . . . −1

. . . . . −1 .

. . . . −1 . .

. . . −1 . . .

. . −1 . . . .

. −1 . . . . .
−1 . . . . . .


.
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[GHLMP] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeiffer, G. CHEVIE – A system for computing
and processing generic character tables for finite groups of Lie type, Weyl groups and
Hecke algebras. Appl. Algebra Eng. Commun. Comput. 1996, 7, 175–210.

[KM] Kantor, W; Magaard, K. Black box exceptional groups of Lie type. In preparation.

[K] Kemper, G. The Depth of Invariant Rings and Cohomology, with an appendix by K.
Magaard. Preprint. Queen’s University, Kingston, Ontario, 1999.
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