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Abstract

We study the cohomology modules Hi(G,R) of a p-group G acting on a ring R
of characteristic p, for i > 0. In particular, we are interested in the Cohen-Macaulay
property and the depth of Hi(G,R) regarded as an RG-module. We first determine
the support of Hi(G,R), which turns out to be independent of i. Then we study the
Cohen-Macaulay property for H1(G,R). Further results are restricted to the special
case that G is cyclic and R is the symmetric algebra of a vector space on which G acts.
We determine the depth of Hi(G,R) for i odd and obtain results in certain cases for i
even. Along the way, we determine the degrees in which the transfer map TrG : R→ RG

has non-zero image.

Introduction

Modular invariant theory is the study of invariant rings RG, where G is a finite group acting
on a ring R such that the order of G is not invertible in R. The standard situation is the
special case where R is the ring of polynomials on a vector space V over a field K with a
linear G-action. More precisely, R = S(V ∗) is the symmetric algebra of the dual of V . The
situation becomes modular if the characteristic of K divides |G|. Since RG coincides with
the zeroth cohomology H0(G,R), it is only natural to consider higher cohomology modules,
H i(G,R), as well. Each cohomology module is an RG-module, since multiplication with
an invariant gives a G-equivariant mapping R → R which induces an endomorphism of
H i(G,R). Considering H i(G,R) as an RG-module raises natural questions concerning the
Cohen-Macaulay property, the support, and the depth (in the case where R = S(V ∗), so
we have a grading). Apart from being interesting in themselves, the cohomology modules
H i(G,R) have proven to be a sharp tool in the study of the Cohen-Macaulay property
and depth of the invariant ring RG. Various authors [6, 9, 12, 13, 14, 15], have used this
approach.

Not much is known about the structure of H i(G,R) as an RG-module. Ellingsrud and
Skjelbred [6] showed that H i (G,S(V ∗)) is Cohen-Macaulay if G is cyclic of order p. This
result was generalized by Kemper [14, Example 2.14] to all groups G such that p2

- |G|.
So the first question to ask is: What happens if we consider the group G = Z/p2 or,
more generally, any cyclic p-group of order greater than p? The answer is that the Cohen-
Macaulay property very often fails in these cases (see Theorem 3.1). This observation was
the starting point of our investigations, which subsequently included larger classes of groups
and actions on non-polynomial rings.

In the first section of this paper we determine the support of H+(G,R), the positive
part of the cohomology, where R is a ring of positive characteristic p. It turns out that this
support coincides with the wild branch locus of Spec(R) → Spec(RG) (see Theorem 1.4).
This result was obtained by Kemper [14, Theorem 2.10] for a special case. In the second
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section we restrict our attention to the case of a p-group acting on a commutative ring R
of characteristic p. We use localization techniques to show that for i > 0 the support of
H i(G,R) does not depend on i. Then we study the first cohomology H1(G,R) and obtain
a rather restrictive necessary condition for this module to be Cohen-Macaulay. In the case
where R = S(V ∗) with V a faithful KG-module, this condition implies that G is generated
by elements of order p. In Section 3 we consider the case where G = Z/pk+1 is cyclic and
R = S(V ∗) with V a KG-module. This assumption renders the cohomology modules much
more tractable. As a first result we establish that for odd i the depth of H i(G,R) is equal
to the dimension of the fixed space V G. The situation turns out to be much more difficult
for i even. We first consider the case where V is a free KG-module. In that context we
prove a general result, Theorem 3.3, about the image of the transfer for a p-group acting
by permutations, and as a corollary we determine the depth of H i (G,S(V ∗)) for i even
and V free. For the further study of H i(G,R) for i even we have to consider the transfer
in greater detail. In Section 3.3 we determine the degrees where the transfer TrG : R→ RG

has non-zero image (all in the situation G = Z/pk+1 and R = S(V ∗)). Since the transfer
map is of utmost importance in modular invariant theory, this should be of some interest
in itself. Using the results from Section 3.3, we obtain information about the depth of
H i(G,R) in some special cases.

It is clear that our results are far from complete. In fact, we consider this paper to be
the beginning of an investigation, which we hope will lead to further developments.

Acknowledgement. Most of this research was done during a stay of the second author
at the University of Kent at Canterbury as an EPSRC Visiting Fellow. We thank the
EPSRC for funding this visit.

1 The support of cohomology

In this section R is a commutative ring (with unity) of characteristic a prime p, and G is an
arbitrary finite group acting on R by ring automorphisms. We first determine the support
of the positive cohomology H+(G,R) := ⊕i≥1 H

i(G,R).
We need two lemmas which are well-known, but we include proofs for completeness.

Lemma 1.1. Let A and B be rings (with unity but not necessarily commutative), let U be
a left A-module, V a left A, right B, bimodule and W a left B-module. If U is free of finite
rank, then there is a natural isomorphism

HomA(U, V ⊗B W ) ∼= HomA(U, V )⊗B W.

Proof. If U is isomorphic to the left regular module AA, then HomA(U,X) ∼= X for every
left A-module X, verifying the lemma immediately. The general case now follows from the
additivity of the functors HomA(·, V ⊗B W ) and HomA(·, V )⊗B W.

Lemma 1.2. Let A be a commutative ring, G a finite group and M a module over the
group ring AG. Furthermore, let S ⊂ A \ {0} be a multiplicative set. Then for every i ≥ 0

H i(G,S−1M) ∼= S−1H i(G,M).

Proof. Choose a resolution F ∗ → Z of Z as a ZG-module by free ZG-modules F i of finite
rank, e.g. the bar resolution. Let HomZG(F ∗,M) denote the complex with HomZG(F i,M)
as i-th part. Hence H∗(G,M) = H (HomZG(F ∗,M)), where the right hand side is the
homology of the complex. By Lemma 1.1 we have

HomZG(F ∗, S−1M) = HomZG(F ∗,M ⊗A S−1A) ∼= HomZG(F ∗,M)⊗A S−1A
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and therefore

H∗(G,S−1M) ∼= H
(
HomZG(F ∗,M)⊗A S−1A

) ∼= H (HomZG(F ∗,M))⊗A S−1A. (1)

The second isomorphism results from the facts that S−1A is a flatA-module (see Eisenbud [5,
Proposition 2.5]) and that application of an exact functor and forming homology commute.
The claim follows from (1).

For each subgroup H ≤ G, the abelian group H i(H,R) is an RH -module and hence
an RG-module. We define H+ev(G,R) = ⊕i≥1 H

2i(G,R). For a prime ideal P ∈ Spec(R)
define the inertia group GP as

GP := {g ∈ G | g(f)− f ∈ P for all f ∈ R}.

Lemma 1.3. (a) SuppRG(Im resG→H (H+ev(G,R))) ⊆ SuppRG (H+ev(G,R)).

(b) For p ∈ Spec(RG), suppose P ∈ Spec(R) with P ∩RG = p. Then

p ∈ SuppRG (Im resG→〈g〉 (H+ev(G,R)))

for each g ∈ GP with |g| = p.

Proof. (a) Suppose p 6∈ RHS, then by exactness of localization:

Im resG→H (H+ev(G,R))p = Im resG→H (H+ev(G,R)p) = 0,

so p 6∈ LHS.
(b) Suppose g ∈ GP with |g| = p, H := 〈g〉, α ∈ H2i(G,Fp) with i > 0, such that
0 6= β := resG→H(α) (which exists by Benson [2, Theorem 4.1.3 and its proof]) and let β̃
denote the image of β under the map H∗(H,Fp) → H∗(H,R), induced by the inclusion
Fp ↪→ R. Then β̃ ∈ Im resG→H (H+ev(G,R)). Let f ∈ RG with fβ̃ = 0. We have
H2i(H,R) ∼= RH/(g − 1)p−1R. The induced map

H2(H,Fp) ∼= Fp = F
H
p /(g − 1)p−1

Fp → RH/(g − 1)p−1R ∼= H2i(H,R)

takes β = λ ∈ Fp to β̃ = λ+(g−1)p−1R. Since λ ∈ Fp\{0} we have λ /∈ P (as P is a proper
ideal). Since g ∈ GP, (g − 1)p−1R ⊆ P, hence fλ ∈ P. It follows that f ∈ P ∩ RG = p.
We have shown that every element from RG which sends β̃ to zero lies in p. This means
that β̃ remains non-zero in the localization H+(G,R)p, so

p ∈ SuppRG (Im resG→H (H+ev(G,R))).

Theorem 1.4.

SuppRG(H+ev(G,R)) = SuppRG(H+(G,R)) = V(AnnRG(H+(G,R)))
= V(TrG(R)) = {P ∩RG | P ∈ Spec(R), |GP| ≡ 0 mod p}.

Proof. The last equality is Lorenz and Pathak [15, Lemma 1.1]. To prove the remaining
equalities, we first show V(AnnRG(H+(G,R))) ⊆ V(TrG(R)): Let p 6∈ V(TrG(R)), then
for some r ∈ R, f := TrG(r) 6∈ p. By Lorenz and Pathak [15, Lemma 1.3], f annihilates
ker resG→1(H∗(G,R)) = H+(G,R). Hence p 6∈ V(AnnRG(H+(G,R))).

Now assume p 6∈ SuppRG(H+ev(G,R)); then p 6∈ SuppRG (Im resG→H (H+ev(G,R)))
for each H ≤ G. From Lemma 1.3 (b), we see that GP has no elements of order p. Thus

V(AnnRG(H+(G,R))) ⊆ V(TrG(R)) ⊆ SuppRG(H+ev(G,R)) ⊆ SuppRG(H+(G,R))
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and the theorem follows from the standard inclusion

SuppRG(H+(G,R)) ⊆ V(AnnRG(H+(G,R))).

Corollary 1.5. √
AnnRG(H+(G,R)) =

√
TrG(R).

2 Cohomology modules for p-groups

In this section R is again a commutative ring of characteristic p, but now G is a finite p-
group acting on R by ring automorphisms. Using Corollary 1.5, we will first determine the
support of the cohomology modules H i(G,R). This implies knowledge about the dimension
of H i(G,R). Then we derive rather restrictive necessary conditions for H1(G,R) to be
Cohen-Macaulay.

Lemma 2.1. With the notation introduced at the beginning of Section 2 we have

SuppRG
(
H i(G,R)

)
= SuppRG

(
Hj(G,R)

)
for all positive integers i and j.

Proof. Take p ∈ Spec(RG). Using Lemma 1.2 we obtain

p ∈ SuppRG
(
H i(G,R)

)
⇔ H i(G,Rp) 6= 0.

Since G is a p-group, H i(G,Rp) 6= 0 is equivalent to Hj(G,Rp) 6= 0 (see Brown [3, Theo-
rem VI.8.5] or Benson [1, Proposition 3.14.4]). The result follows.

Now Corollary 1.5 and Lemma 2.1 determine the support of the cohomology for a p-
group, in fact the following theorem tells us that the support of H i(G,R) is equal to the
image of the branch locus under the categorical quotient, independent of i.

Theorem 2.2. For every positive integer i we have

SuppRG
(
H i(G,R)

)
= SuppRG

(
H+(G,R)

)
= {RG ∩P | P ∈ Spec(R), GP 6= {1}}.

As a special case we obtain:

Corollary 2.3. Let G be a finite p-group acting linearly on a finite-dimensional vector
space V over a field K of characteristic p. Then

dim
(
H i (G,S(V ∗))

)
= max {dimK(V σ) | σ ∈ G \ {1}} .

We obtain the following, somewhat technical, necessary condition for H1(G,R) to be
Cohen-Macaulay.

Theorem 2.4. Assume that RG is Noetherian and R is finitely generated as a module over
RG. Define H := 〈GP | P ∈ Spec(R)〉 and

Hmin := 〈GP | P ∈ Spec(R) is minimal with GP 6= {1}〉 .

If H1(G,R) is Cohen-Macaulay as an RG-module, then H ⊆ Hmin · Φ(G), where Φ(G) is
the Frattini subgroup.
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Proof. First observe that H1(G,R) is the first homology of a complex of finitely generated
RG-modules, and is therefore itself finitely generated over RG.

Assume that H 6⊆ Hmin · Φ(G). This implies H · Φ(G)/Hmin · Φ(G) 6= {1}. But this
factor group is a subgroup of G/Hmin · Φ(G), which is elementary abelian since G is a
p-group (see Huppert [11, Chapt. III, Satz 3.14(a)]). It follows that there exists a maximal
subgroup of G/Hmin ·Φ(G) which does not contain H ·Φ(G)/Hmin ·Φ(G). This means that
we have a normal subgroup N E G of index p such that Hmin ⊆ N but H 6⊆ N . Thus there
exists a Q ∈ Spec(R) such that GQ 6⊆ N . Choose σ ∈ GQ \N and write σ̄ := σN ∈ G/N .
Then G/N = 〈σ̄〉. Consider the class α ∈ H1(G/N,RN ) = ker(TrGN )/(σ̄ − 1)RN given by
α = 1 + (σ̄−1)RN . The fact that σ lies in GQ implies (σ̄−1)RN ⊆ Q and therefore α 6= 0.

Let β := inf(α) be the image of α under the inflation map inf : H1(G/N,RN ) →
H1(G,R). Then β 6= 0 (see Evens [7, Corollary 7.2.3]). Consider the ideal I := TrGN (RN ) ⊆
RG. We have I = (σ̄−1)p−1RN and therefore I ⊆ AnnRG(α). It follows that I ⊆ AnnRG(β),
which implies

grade
(
I,H1(G,R)

)
∈ {0,∞} (2)

(using the convention of Bruns and Herzog [4, Definition 1.2.6] that grade(I,M) = ∞ if
IM = M). On the other hand, Bruns and Herzog [4, Proposition 1.2.10(a)] (which is
applicable since RG is Noetherian and H1(G,R) is finitely generated over RG) yields

grade
(
I,H1(G,R)

)
= min

{
depth

(
H1(G,R)p

)
| p ∈ Spec(RG), I ⊆ p

}
. (3)

The hypothesis that H1(G,R) is Cohen-Macaulay implies that

depth
(
H1(G,R)p

)
= dim

(
H1(G,R)p

)
for every p ∈ Spec(RG) (see Bruns and Herzog [4, Theorem 2.1.3(b)]), where we use the
convention dim(0) = ∞. Thus in the right hand side of (3) we can substitute the depth
by the dimension. Now it follows from (2) that there exists p ∈ Spec(RG) with I ⊆ p and
H1(G,R)p = 0 or dim

(
H1(G,R)p

)
= 0. Choose a P ∈ Spec(R) with RG ∩P = p. Then

I ⊆ P, which by Lorenz and Pathak [15, Lemma 1.1] implies

NP $ GP, (4)

hence GP 6= {1}. By Theorem 2.2 this implies H1(G,R)p 6= 0. Hence dim
(
H1(G,R)p

)
= 0,

which means that p is a minimal element of SuppRG
(
H1(G,R)

)
. But then P must also be

minimal with GP 6= {1}, since by Theorem 2.2, an ideal P′ $ P with GP′ 6= {1} would yield
p′ $ p with p′ ∈ SuppRG

(
H1(G,R)

)
(see Eisenbud [5, Corollary 4.18]). By the definition

of Hmin, this means that GP ⊆ Hmin, implying GP ⊆ N and contradicting (4).

Remark. The hypotheses in Theorem 2.4 requiring RG to be Noetherian and R to be
finitely generated over RG, may seem a bit awkward. In particular, the hypotheses imply
that R is Noetherian, so one might wonder if it suffices to assume that R is Noetherian.
However, there exist examples of a Noetherian ring R and a finite group G ≤ Aut(R) such
that RG is not Noetherian and R is not finitely generated over RG (see Montgomery [16,
Example 5.5]). /

The following corollaries are less technical. We consider the special case where G
(still a p-group) acts linearly on a finite-dimensional vector space V over a field K of
characteristic p. Then G also acts on R := S(V ∗), the symmetric algebra of the dual of V .

Corollary 2.5. In the above situation define F := {V σ | σ ∈ G \ {1}}. If H1(G,R) is
Cohen-Macaulay (as a module over RG), then

G = 〈σ ∈ G \ {1} | V σ is maximal in F〉 .
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The following elementary lemma is needed for the proof.

Lemma 2.6. Let P =
(
(V σ)⊥

)
be the ideal in R generated by all linear forms in V ∗

vanishing on V σ. Then

(a) σ ∈ GP;

(b) if σ ∈ GQ for Q ∈ Spec(R), then P ⊆ Q.

Proof. (a) Let l ∈ V ∗ be a linear form. Then for v ∈ V σ we have

((σ − 1)l) (v) = l
(
σ−1(v)− v

)
= l(0) = 0, (5)

so (σ − 1)l ∈ (V σ)⊥ ⊂ P. Assume that we have shown (σ − 1)f ∈ P for an f ∈ R. Then

(σ − 1)(lf) = σ(l) · (σ − 1)f + f · (σ − 1)l ∈ P.

By induction, (σ − 1)R ⊆ P now follows.
(b) Equation (5) shows that (σ− 1)V ∗ ⊆ (V σ)⊥. The rank of σ− 1 on V ∗ equals the rank
on V , which in turn is equal to dimK(V )−dimK(V σ) = dimK

(
(V σ)⊥

)
. Thus (σ− 1)V ∗ =

(V σ)⊥, so for l ∈ (V σ)⊥ there exists h ∈ V ∗ with (σ − 1)h = l. Hence l ∈ (σ − 1)R ⊆ Q.
Since P is generated by (V σ)⊥, the result follows.

Proof of Corollary 2.5. The hypotheses of Theorem 2.4 are satisfied, so we need to analyse
the conclusion in the context of the corollary. For Q := R+, the direct sum of all Si(V ),
i > 0, we have Q ∈ Spec(R) and GQ = G. Therefore the subgroup H from Theorem 2.4
coincides with G. Hence Theorem 2.4 says that Hmin = G. In other words, G is generated
by σ ∈ GP \ {1} with P ∈ Spec(R) minimal with the property that GP 6= {1}.

Take such a σ and assume, by way of contradiction, that V σ is not maximal in F . Hence
there exists a τ ∈ G \ {1} with V σ

$ V τ . Let P′ :=
(
(V τ )⊥

)
be the ideal in R generated

by the linear forms vanishing on V τ . Then τ ∈ GP′ by Lemma 2.6(a), hence GP′ 6= {1}.
We claim that P′ $ P, which will contradict the minimality of P. Indeed, take l ∈ (V τ )⊥.
Then V σ ⊆ V τ implies l ∈ (V σ)⊥ and so, by Lemma 2.6(b), l ∈ P. This yields P′ ⊆ P.
Since V σ is proper in V τ there exists an l ∈ (V σ)⊥ \ (V τ )⊥. As above, it follows that l ∈ P,
but l /∈ P′ by the construction of P′. Therefore P′ $ P, which completes the proof.

Corollary 2.7. In the situation of Corollary 2.5, assume that the action of G on V is
faithful and H1(G,R) is Cohen-Macaulay as an RG-module. Then G is generated by ele-
ments of order p.

Proof. By Corollary 2.5, G is generated by σ ∈ G\{1} such that V σ is maximal among the
V τ , τ ∈ G \ {1}. But it can be seen from the Jordan canonical form of σ that V σ

$ V σp .
Hence σp = 1.

Remark. Corollary 2.7 is in sharp contrast with Example 2.14 from Kemper [14], where
it is shown that H i(G,R) is Cohen-Macaulay for all i > 0 if the order of G is not divisible
by p2. /

3 Cohomology modules for cyclic p-groups

In this section G = 〈σ〉 is a cyclic group of order pk+1 acting on a finite-dimensional vector
space V over a field K of characteristic p. We write R = S(V ∗) for the symmetric algebra
of the dual of V . We will analyse the RG-modules Hj(G,R). The depth of H0(G,R) is
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known by Ellingsrud and Skjelbred [6]. We are interested in the depth of Hj(G,R) for
j > 0 as RG-modules. By Kemper [14, Theorem 2.13(a)] we know that

depth
(
Hj(G,R)

)
≥ dimK(V G). (6)

To obtain more information we use the special form of the group. In fact, we have

H i(G,V ) =

{
V G/TrG(V ) if i > 0 is even,
ker(TrG)/(σ − 1)V if i is odd

(7)

for any KG-module V (see, for example, Evens [7, p. 6]). Hence it suffices to consider j = 1
and j = 2, where the case j = 1 is fairly straightforward and will be discussed in the next
subsection. After that we discuss the case j = 2 with V being a free KG-module. The
case j = 2 and V not free is more subtle and requires detailed information on the transfer
ideal TrG(R). These results, some of which are of independent interest, will be collected
in the third subsection. Throughout this section we use Vm, for m ≤ |G|, to denote the
indecomposable KG-module of dimension m.

3.1 The depth of H1(G,R)

In this section we determine the depth of H1(G,R) when G a cyclic p-group.

Theorem 3.1. With the notation introduced at the beginning of Section 3 we have

depth
(
H1(G,R)

)
= dimK(V G). (8)

In particular, H1(G,R) is Cohen-Macaulay if and only if |G| = p.

Proof. V G is a submodule of V on which G acts trivially. Moreover, H1(G,R) is a module
over EndKG(R). Thus Theorem 1.5 of Kemper [14] yields

depth
(
H1(G,R)

)
= dimK(V G) + grade

(
i,H1(G,R)

)
,

where i is the intersection with RG of the ideal in R generated by all linear forms van-
ishing on V G. But i coincides with the radical ideal of the image of the relative transfer
TrGN : RN → RG for N := 〈σp〉 (see Fleischmann [8]). Thus

depth
(
H1(G,R)

)
= dimK(V G) + grade

(
TrGN (RN ),H1(G,R)

)
.

Take any f ∈ TrGN (RN ). Then f = TrGN (g) = (σ − 1)p−1(g) with g ∈ RN . Let α :=
1 + (σ − 1)R be the class of 1 in H1(G,R). Then

fα = (σ − 1)p−1(g) + (σ − 1)R = 0.

Thus every element in TrGN (RN ) is a zero-divisor on H1(G,R), and, therefore, we obtain
grade

(
TrGN (RN ),H1(G,R)

)
= 0. This yields (8).

The additional statement follows from comparing (8) with Corollary 2.3.

3.2 The depth of H2(G,S(V ∗)) for V free

We now consider H2(G,R) when V is a free G-module, i.e., V = mVpk+1 . In this case
V ∼= V ∗ is a permutation module and, choosing a permutation basis for V ∗, the group
G permutes monomials in R = S(V ∗), i.e. RG is what is called a ring of permutation
invariants. We will now prove a general result on permutation invariants of p-groups that
contains the required information on H2(G,R) in the special case where G is cyclic.

The following lemma, which will also be used later in the paper, tells how to recognize
free summands using the transfer. Although it is well known in representation theory, we
will provide a short proof:
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Lemma 3.2. Let P be a p-group and V a finitely generated KP -module. Then V contains
a free direct summand if and only if TrP (V ) 6= 0 and V is free if and only if TrP (V ) = V P .

Proof. First assume that w := TrP (v) 6= 0 for v ∈ V . The homomorphism

ϑ : KP → V, f 7→ fv

maps the one-dimensional socle soc(KP ) = K · TrP (1P ) onto the line K · w ⊆ V P . Hence
ϑ is a monomorphism. Since KP is a finite-dimensional Frobenius-algebra, the notions
of finitely generated projective, injective and free modules coincide. Hence ϑ splits, i.e.
V ∼= KP ⊕W . For the second claim we can assume that V 6= 0 is indecomposable. If V is
not free, then by the previous argument TrP (V ) must be zero, whereas V P is nonzero. If
V is free, then V ∼= KP and clearly V P = TrP (V ).

Theorem 3.3. Let P be a p-group acting on the finite set Ω and let KΩ denote the cor-
responding KP -permutation module over the field K of characteristic p. Let Z / P be a
normal subgroup of order p with quotient P := P/Z; furthermore let Ω/Z denote the set of
Z-orbits on Ω. Then one has for R := S(KΩ):

RP /TrP (R) ∼= S(KΩ/Z)P ⊕
(
TrZ(R)

)P
/TrP (R).

Moreover
(
TrZ(R)

)P = TrP (R) if and only if TrZ(R) is free as KP -module. In particular,
this is true if P is cyclic, i.e., in this case RP /TrP (R) ∼= S(KΩ/Z)P .

Proof. Note that the action of P on Ω induces an action of P on Ω/Z in a natural way.
Let V := KΩ with basis {Xω | ω ∈ Ω}. Then R = ⊕α: Ω→N0 KX

α with Xα :=
∏
ω∈Ω Xαω

ω

and P acts on R by g(Xα) = Xα◦g−1
. For every subgroup H ≤ P the invariant ring

RH has a K-basis consisting of H-orbit sums, i.e. relative transfers TrHHα(Xα), where
Hα := {h ∈ H | α ◦ h = α} is the stabiliser of Xα. For each Z-orbit O ∈ Ω/Z let
NO =

∏
ω∈O Xω be the orbit product in RZ . A monomial Xα is stabilised by Z if and

only if α is constant on the orbits in Ω/Z, and hence if and only if it is a monomial in the
NO’s. These orbit products generate a polynomial subalgebra B of RZ , which is isomorphic
to S(KΩ/Z) as a KP -module. All the other Z-orbit sums in RZ are absolute transfers,
because Z has no nontrivial proper subgroups. It is now easy to see that RZ = TrZ(R)⊕B
as KP -modules. Moreover

RP = (RZ)P = TrZ(R)P ⊕BP

and TrP (R) = TrPZ (TrZ(R)) = TrP (TrZ(R)) ⊆ TrZ(R)P . This, together with Lemma 3.2,
proves the first two statements.

Now assume that P is cyclic. Then R = X ⊕ Y , where X is spanned by the Xα with
Pα = 1 and Y is spanned by the Xβ with Z ≤ Pβ. It follows that TrZ(R) = TrZ(X).
But X is a direct sum of regular KP -modules, hence it is free in each fixed degree. Let
Z+ := TrZ(1) ∈ KP ; then

TrZ(KP ) = Z+KP = Z+KZ ⊗KZ KP ∼= KZ+ ⊗KZ KP ∼= KP.

Hence in each degree TrZ(R) is free as KP -module.

Returning to the standard situation of this section, let G be cyclic of order pk+1 and
R = S(V ∗). Assume that V := mVpk+1 is the direct sum of m copies of the regular module
KG and let Z ≤ G be the unique minimal subgroup. The corresponding set Ω is the union
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of m copies of G and Ω/Z is the union of m copies of G = G/Z. Hence KΩ/Z is the sum
of m copies of the regular module G and we get

H2(G,R) ∼= RG/TrG(R) ∼= S(mKG)G.

Thus applying Ellingsrud and Skjelbred [6] gives:

Corollary 3.4. In the above situation we have

depth
(
H2(G,R)

)
= min{2 +m,mpk}.

In particular, H2(G,R) is Cohen-Macaulay if and only if

m(pk − 1) ≤ 2.

Proof. We only need to prove the statement on the Cohen-Macaulay property. From Corol-
lary 2.3 we see that dim

(
H2(G,R)

)
= dimK(V Z) = mpk. Thus H2(G,R) is Cohen-

Macaulay if and only if 2 +m ≥ mpk.

Remark 3.5. Note that the isomorphism B ∼= S(KΩ/Z) does not preserve degrees. In
fact, for O ∈ Ω/Z the ‘variable’ NO ∈ B has degree |O| rather than degree one. Let P be
cyclic of order p2 and Z the subgroup of order p. Then Theorem 3.3 gives

S(V ∗p2)Z/p2
/TrZ/p2

(S(V ∗p2)) ∼= S
(
V ∗p
)Z/p

.

From Shank and Wehlau [17, Theorem 6.2], S
(
V ∗p
)Z/p contains an indecomposable invari-

ant of degree 2p − 3. Taking into account the ‘blow-up’ of degrees in the isomorphism
B ∼= S(KΩ/Z), we see that the quotient ring S(V ∗p2)Z/p2

/TrZ/p2
(S(V ∗p2)) contains an inde-

composable element of degree p(2p−3) = 2p2−3p > p2 (for p > 3). It had been conjectured
that all indecomposable homogeneous modular invariants of degree larger than |P | lie in
the transfer ideal. The above arguments show that this is not the case, if P is cyclic of
order p2.

3.3 The lowest degree in the image of the transfer for a cyclic p-group

Next we consider H2(G,R) in greater generality. For that purpose we study the image
of the transfer in RG. We are particularly interested in the smallest degree for which the
transfer is non-zero. From Lemma 3.2, we know that TrG(R)d 6= 0 is equivalent to the
condition that the KG-module Rd contains a free direct summand. Recall that R = S(V ∗)
for some KG-module V . Hence Rd ∼= Sd(V ∗) is a quotient of the d-fold tensor space
(V ∗)⊗d. Hence TrG(R)d 6= 0 also implies that (V ∗)⊗d contains a free summand. It is
somewhat surprising that the reverse turns out to be true for a cyclic group G.

If V is not faithful, then the minimal subgroup Z ≤ G acts trivially on R and TrG(R) =
TrGZ (TrZ(R)) = 0. Thus we can restrict attention to faithful modules. For any KG-module
V we define mt(V ) := min{d ∈ N | TrG(Sd(V ∗)) 6= 0} with the convention min ∅ = ∞.
Recall that the indecomposable modules for G (the cyclic group of order pk+1) are given by
Vn (1 ≤ n ≤ pk+1), where n = dim(Vn), and a generator of G acts as a full Jordan block.
The following is the main result of this subsection:

Theorem 3.6. Let G ∼= Z/pk+1 and V a KG-module.

i) Let 0 ≤ n =
∑k

i=0 nip
i < pk+1 with 0 ≤ ni < p; if nk > 0, let p − 1 = dnk + r with

0 ≤ r < nk. Then

mt(Vn+1) =


∞ if nk = 0
d if r = 0 and n ≥ nk(1 + p+ · · ·+ pk)
d+ 1 otherwise.
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ii) Suppose that V ∼= Vm1 ⊕Vm2 ⊕· · ·⊕Vml with 0 ≤ m1 ≤ m2 ≤ · · · ≤ ml ≤ pk+1. Then
mt(V ) = mt(Vml).

iii) For any non-negative integer d the following are equivalent:

(a) the free module Vpk+1 appears as a direct summand of V ⊗d;

(b) the free module Vpk+1 appears as a direct summand of Sd(V );

(c) d ≥ mt(V ).

The proof will be given below, after a series of technical lemmas. We will make use of
the representation ring (also called the Green ring) RKG. As a Z-module RKG is a free
module with the isomorphism classes of indecomposable KG-modules as basis elements,
and the multiplication is given by the tensor product. We will consider the elements
χi := Vpi+1 − Vpi−1 ∈ RKG (0 ≤ i ≤ k), where formally we set V0 := 0. We will use the
following formulas of Green [10, Theorem 3], which hold for 0 ≤ i ≤ k.

χiVr =


Vr+pi − Vpi−r if 1 ≤ r ≤ pi,
Vr+pi + Vr−pi if pi < r ≤ (p− 1)pi,
Vr−pi + 2Vpi+1 − V2pi+1−pi−r if (p− 1)pi < r ≤ pi+1.

(9)

Lemma 3.7. Let n be an integer with 0 ≤ n < pk+1 and write n =
∑k

i=0 nip
i with 0 ≤

ni < p. There exists a unique polynomial fn ∈ Z[X0, . . . , Xk] with degXi(fn) < p for all i,
such that

Vn+1 = fn(χ0, . . . , χk).

Moreover, using the lexicographical monomial ordering with Xk > Xk−1 > · · · > X0, fn
has the leading monomial Xnk

k X
nk−1

k−1 · · ·X
n0
0 with leading coefficient 1.

Proof. We first remark that the existence of the fn will imply uniqueness. In fact, if B is
the set of all polynomials f ∈ Z[X0, . . . , Xk] with degXi(f) < p for all i, then the existence
will provide an epimorphism B → RKG of Z-modules. However B and RKG are both free
of rank pk+1, therefore the epimorphism must in fact be an isomorphism.

We prove the existence of fn and the statement on the leading monomial and coefficient
by induction on n. For n = 0 we have f0 = 1. So assume n > 0 and let j be maximal with
nj 6= 0. We have 1 ≤ n+ 1− pj ≤ (p− 1)pj . Hence Green’s formulas (9) yield

χjVn+1−pj =

{
Vn+1 − V2pj−n−1 if n+ 1 ≤ 2pj ,
Vn+1 + Vn+1−2pj if n+ 1 > 2pj .

We have 2pj − n− 1 < n+ 1, hence in each case we obtain Vn+1 = χjVn+1−pj ± Vm+1 for
some m < n. By induction, this yields

Vn+1 = χjfn−pj (χ0, . . . , χk)± fm(χ0, . . . , χk),

so with fn := Xjfn−pj ± fm we have Vn+1 = fn(χ0, . . . , χk). Also by induction, the
leading monomial of fm is less than X

nj
j X

nj−1

j−1 · · ·X
n0
0 , and the leading term of fn−pj is

X
nj−1
j X

nj−1

j−1 · · ·X
n0
0 . This yields the statement on the leading monomial and coefficient of

fn. We also get from the induction hypothesis that degXi(fn) < p for i 6= j, and it follows
from the description of the leading monomial of fn that degXj (fn) = nj < p.

By Lemma 3.7, we have an epimorphism Z[X0, . . . , Xk]→ RKG by sending each Xi to
χi. We denote the kernel of this epimorphism by I.
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Lemma 3.8. There exist polynomials r0, . . . , rk ∈ I with the leading monomial LM(ri) =
Xp
i . Moreover, the leading coefficient of ri is 1.

Proof. Take an integer i with 0 ≤ i ≤ k. By (9) we have

χiV(p−1)pi+1 = V(p−2)pi+1 + 2Vpi+1 − Vpi+1−1,

so ri := Xif(p−1)pi − f(p−2)pi − 2fpi+1−1 + fpi+1−2 lies in I. By Lemma 3.7 this has leading
monomial Xp

i with coefficient 1.

Proposition 3.9. Let V = Vm1+1⊕· · ·⊕Vml+1 be a finitely generated KG-module and let d
be a non-negative integer. Write n := max{m1, . . . ,ml} as n =

∑k
i=0 nip

i with 0 ≤ ni < p.
If there exists a j ∈ {0, . . . , k} such that ni = (p− 1)/d for j < i ≤ k but nj < (p− 1)/d,
then TrG

(
V ⊗d

)
= 0.

Proof. By Lemma 3.2 we have to show that under the assumption of the proposition,
no Vpk+1 occurs as an indecomposable summand in V ⊗d. With f := fm1 + · · · + fml ,
Lemma 3.7 tells us that V = f(χ0, . . . , χk), and LM(f) = Xnk

k X
nk−1

k−1 · · ·X
n0
0 . Hence

V ⊗d = fd(χ0, . . . , χk), and

LM(fd) = Xdnk
k X

dnk−1

k−1 · · ·Xdn0
0 = Xp−1

k · · ·Xp−1
j+1X

dnj
j X

dnj−1

j−1 · · ·Xdn0
0 < (Xk · · ·X0)p−1 .

Let g ∈ Z[X0, . . . , Xk] be a normal form of fd with respect to the set {r0, . . . , rk} from
Lemma 3.8. Then LM(g) ≤ LM(fd) and g − fd ∈ I, so V ⊗d = g(χ0, . . . , χk). But we
have degXi(g) < p for every i, since LM(ri) = Xp

i . Therefore g is the unique polynomial
with degXi(g) < p and V ⊗d = g(χ0, . . . , χk). But if V ⊗d had Vpk+1 as an indecomposable
summand, this unique polynomial would have the leading monomial (Xk · · ·X0)p−1 by
Lemma 3.7. However, the leading monomial of g is smaller than this.

Corollary 3.10. With the setting and assumptions of Proposition 3.9, there exists no non-
zero element of degree d in TrG (S(V )). In particular, the numbers given in Theorem 3.6(i)
and (ii) are lower bounds for mt(V ).

Proof. We have to show that TrG
(
Sd(V )

)
= 0, where Sd(V ) is the d-th symmetric power.

But there exists natural epimorphism ϕ: V ⊗d → Sd(V ) of KG-modules. Therefore

TrG
(
Sd(V )

)
= TrG

(
ϕ
(
V ⊗d

))
= ϕ

(
TrG

(
V ⊗d

))
= 0

by Proposition 3.9.

So far we have looked at conditions ensuring that V ⊗d and therefore Sd(V ) do not
contain a free summand. We now look at the opposite, namely conditions such that Sd(V )
and therefore V ⊗d do contain such a summand. We will use Lemma 3.2 as our main tool
and therefore we need some results on transfers.

3.3.1 Computing transfers

Lemma 3.11. Let X be an arbitrary finite group, acting on a ring A. Suppose that H
is a subgroup of X, g ∈ A and h ∈ AH . Further suppose f := TrH(g) ∈ AX . Then
TrX(gh) = f TrXH(h).
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Proof. Using the factorisation TrX = TrXH ◦TrH gives TrX(gh) = TrXH(TrH(gh)). Since
h ∈ AH , we have TrH(gh) = hTrH(g). By hypothesis TrH(g) ∈ AX . Thus

TrXH(hTrH(g)) = TrXH(h) TrH(g) = f TrXH(h)

as required.

Lemma 3.12. For an integer 0 ≤ ` < p we have∑
c∈Fp

c` =
{

0 if 0 ≤ ` < p− 1;
−1 if ` = p− 1.

Defining ∆ := σ − 1 and applying the binomial theorem gives

σi =
i∑

j=0

(
i

j

)
∆j .

Over a field of characteristic p this gives σp
i

= 1 + ∆pi . Suppose G = 〈σ〉 ∼= Z/pk+1 and α
is an element in a KG-module with KGα ∼= Vn+1. Then comparing binomial coefficients
gives

σiα =
n∑
j=0

(
i

j

)
∆jα.

If n = pim+ r with 0 ≤ r < pi and H := 〈σpi〉 then KHα ∼= Vm+1 and the corresponding
fixed point is ∆mpiα.

Theorem 3.13. Let H = Z/p and suppose that V is a KH-module and α1, α2, . . . , α` is
a sequence of not necessarily distinct elements of S(V ∗). Define mi by KH · αi ∼= Vmi+1

and define βi by ∆miαi = βi. If
∑`

i=1mi = p− 1 then

TrH
(∏̀
i=1

αi

)
= −

∏̀
i=1

βi
mi!

.

Proof. Observe that σc(αi) =
∑mi

j=0

(
c
j

)
∆jαi. Thus

TrZ/p

(∏̀
i=1

αi

)
=

∑
c∈Fp

∏̀
i=1

mi∑
j=0

(
c

j

)
∆jαi

=
∑
c∈Fp

∏̀
i=1

(
αi + · · ·+

(
c

mi

)
βi

)

=
∑
c∈Fp

(∏̀
i=1

αi + · · ·+
∏̀
i=1

(
c

mi

)
βi

)
.

Note that the degree of
(
c
j

)
as a polynomial in c is j. Thus

∏`
i=1

(
c
mi

)
has degree

∑`
i=1mi =

p− 1. All other terms in the sum have coefficients which, as polynomials in c, have degree
less than p− 1. Therefore, using Lemma 3.12, these terms don’t contribute. Thus

TrZ/p

(∏̀
i=1

αi

)
=

∑
c∈Fp

∏̀
i=1

(
c

mi

)
βi

=

(∏̀
i=1

βi
mi!

) ∑
c∈Fp

∏̀
i=1

c(c− 1) · · · (c−mi + 1).
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A further application of Lemma 3.12 gives

∑
c∈Fp

∏̀
i=1

c(c− 1) · · · (c−mi + 1) =
∑
c∈Fp

(cp−1 + · · · ) = −1

as required.

In the following we write xn+1 for a linear form in V ∗ which generates a KG-module
of type Vn+1. Furthermore, for r ≤ n, we write xr := ∆n+1−r(xn+1).

Corollary 3.14. Suppose n+ 1 ≤ p and nd = p− 1. Then

TrZ/p(xdn+1) = −
(x1

n!

)d
.

Proof. Apply Theorem 3.13 with αi = xn+1, βi = x1, mi = n and
∑
mi = dn = p− 1.

Lemma 3.15. Suppose t and d are positive integers with td = p− 1 and let n := t(1 + p+
p2 + · · ·+ pk) = (pk+1 − 1)/d. Then

TrG(xdn+1) =
xd1

(−(t!)d)k+1
.

Proof. The proof is by induction on k. For k = 0, the result is given by Corollary 3.14. For
k > 0, let N := 〈σp〉 ∼= Z/pk. The N -module generated by xn+1 is isomorphic to Vn′+1 with
n′ = (pk − 1)/d and the corresponding fixed point is xt+1. Therefore, using the induction
hypothesis, TrN (xdn+1) = (−(t!)−d)kxdt+1. However TrG = TrGN ◦TrN = TrG/N ◦TrN . Thus
TrG(xdn+1) = (−(t!)−d)k TrG/N (xdt+1). The G/N -module generated by xt+1 is isomorphic
to Vt+1 and the corresponding fixed point is x1. Therefore, applying Corollary 3.14 gives
TrG/N (xdt+1) = −(t!)−dxd1 and the result follows.

Lemma 3.16. Suppose t ≤ p−1 is a positive integer. Divide t into p−1 to get p−1 = td+r
with 0 ≤ r < t. Then

TrG
(
xdtpk+1x(r+1)pk

)
=
−xd+1

1

(t!)dr!
.

Proof. Let H := 〈σpk〉 ∼= Z/p. The H-module generated by xtpk+1 is isomorphic to Vt+1

with corresponding fixed point x1. Since (r + 1)pk = rpk + (pk − 1) + 1, the H-module
generated by x(r+1)pk is isomorphic to Vr+1 with corresponding fixed point xpk . Thus
applying Theorem 3.13 gives

TrH
(
xdtpk+1x(r+1)pk

)
=
−xd1xpk
(t!)dr!

.

The result then follows from the factorisation TrG = TrGH ◦TrH and the fact that TrGH(xpk) =
TrZ/pk(xpk) = x1.

3.3.2 Proof of Theorem 3.6

For brevity we write IG := TrG(R). Assume pk ≤ n < pk+1 and V = Vn+1. Write
n =

∑k
i=0 nip

i with 0 ≤ ni ≤ p − 1. Divide nk into p − 1 to get p − 1 = dnk + r with
0 ≤ r < nk. Using Lemma 3.16, we see that xd+1

1 ∈ IG. If r > 0, applying Proposition 3.9
with j = k shows that IG is zero in degrees less than or equal to d. If r = 0 and nk(pj +
· · · + pk) ≤ n < nk(pj−1 + · · · + pk) then again Proposition 3.9 tells us that IG is zero in
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degrees less than or equal to d. However if n ≥ nk(1+p+ · · ·+pk), then from Lemma 3.15,
xd1 ∈ IG. A further application of Proposition 3.9 shows that, in this case, IG is zero in
degrees less than or equal to d − 1. Note that n necessarily falls into one of three cases:
(i) r > 0, (ii) r = 0 and nk(pj + · · · + pk) ≤ n < nk(pj−1 + · · · + pk), (iii) r = 0 and
n ≥ nk(1 + p+ · · ·+ pk). In the first two cases the minimal non-zero degree for IG is d+ 1
while in the third case the minimal non-zero degree for IG is d. In all three cases there is
a power of x1 in the first non-zero degree.

This proves part i) of Theorem 3.6 for indecomposable KG-modules. Suppose V is
arbitrary KG-module. Since G is a p-group, there is an invariant 0 6= v ∈ S(V ∗)G of
degree one. Suppose d > mt(V ) and X ∼= Vpk+1 is a submodule of Smt(V )(V ∗). Then
Vpk+1

∼= vd−mt(V ) ·X ≤ Sd(V ∗), which splits off, because X is projective and hence injective
in the category of KG-modules. This shows that the implications (c)⇔ (b)⇒ (a) hold for
arbitrary V . Together with the proof so far we see that (a), (b) and (c) are equivalent if
V is indecomposable.

Suppose V is decomposed as in part ii) of the theorem. Then Smt(Vml )(Vml) appears as
a submodule of

(
Smt(Vml (V )

)
, hence mt(V ) ≤ mt(Vml). Now assume that some summand

F ∼= Vpk+1 appears in a submodule S of Sd(V ) ∼=
(
⊗li=1 S(Vmi)

)
d
. We can choose S of the

form Ss1(Vm1)⊗· · ·⊗Ssl(Vml) with s1 +s2 + · · ·+sk = d = mt(V ). Hence F also appears in
V ⊗s1m1

⊗· · ·⊗V ⊗slml
. Since m1 ≤ m2 ≤ · · · ≤ ml, we know that V ⊗s1m1

⊗· · ·⊗V ⊗slml
is isomorphic

to a submodule of V ⊗s1ml
⊗ · · · ⊗ V ⊗slml

∼= V
⊗mt(V )
ml . Hence F splits off V

⊗mt(V )
ml . Since Vml is

indecomposable, we can use iii) (c) to conclude mt(V ) ≥ mt(Vml). This finishes the proof
of Theorem 3.6.

3.4 On the depth of even cohomology

We keep the notation introduced at the beginning of Section 3, and we continue to write
IG = TrG(R). For a subgroup H ≤ G we write IGH = TrGH(RH) for the image of the relative
transfer.

Theorem 3.17. Suppose that H is a subgroup of G and (IH \ IG) ∩ RG is non-empty.
Then depth(RG/IG) ≤ dim(RG/IGH).

Proof. Choose f ∈ (IH \ IG) ∩ RG. By Lemma 3.11, f + IG is a nonzero element of
M := RG/IG which annihilates IGH + IG ⊂ RG/IG. Thus every element of IGH acts as a
zero divisor on M and therefore IGH is contained in some associated prime p of M . Now the
‘graded version’ of Bruns and Herzog [4, Proposition 1.2.13] shows that the depth of M is
less than or equal to dim(RG/p) which in turn is less than or equal to dim(RG/IGH).

Theorem 3.18. Suppose td = p− 1 and t(pi + pi+1 + · · ·+ pk) ≤ n < t(pi−1 + pi + · · · pk).
Then depth(H2(G,S(V ∗n+1))) ≤ pi−1 and, if i ≤ k, H2(G,S(V ∗n+1)) is not Cohen-Macaulay.

Proof. Let H := 〈σpi〉 ∼= Z/pk+1−i, m := t(pi+pi+1 + · · ·+pk) and let m′ := m/pi. The H-
module generated by xm+1 is isomorphic to Vm′+1 with corresponding fixed point x1. Thus
applying Lemma 3.15 gives TrH(xdm+1) = (−1(t!)−d)k+1−ixd1 ∈ RG. By Corollary 3.10
we know that IG is zero in degree d thus xd1 6∈ IG. Therefore xd1 ∈ (IH \ IG) ∩ RG.
Applying Theorem 3.17 gives depth(H2(G,R)) ≤ dim(RG/IGH). However dim(RG/IGH) is
the dimension of the subspace of Vn+1 fixed by σp

i−1
. Thus depth(H2(G,R)) ≤ pi−1.

Furthermore dim(H2(G,R)) = pk. Therefore, as long as k ≥ i, H2(G,R) is not Cohen-
Macaulay.

Theorem 3.19. Suppose td = p− 1 and t(p+ p2 + · · ·+ pk) ≤ n < t(1 + p+ p2 + · · · pk).
Then depth(H2(G,S(V ∗n+1)) = 1.
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Proof. Applying Theorem 3.18 with i = 1 gives depth(H2(G,R)) ≤ 1 and from 6, we have
depth(H2(G,S(V ∗n+1)) ≥ 1.

Theorem 3.20. Let V = Vm1+1 ⊕ · · · ⊕ Vm`+1 be a finitely generated KG-module and
define n := max{m1, . . . ,m`}. Suppose that td = p − 1 and t(p + p2 + · · · + pk) ≤ n <
t(1 + p+ p2 + · · · pk). Then depth(H2(G,S(V ∗)) = `.

Proof. It follows from Corollary 3.10 that xd1 + IG is a non-zero element of H2(G,S(V ∗)).
We choose a homogeneous system of parameters for RG consisting of the norms of the
terminal variables and elements from the image of the relative transfer and then proceed
as in the proof of Theorem 3.19.

The following gives an ‘if and only if’ - criterion for the hypothesis in Theorem 3.17, in
the special case where H is the maximal subgroup of G.

Lemma 3.21. If N / G, the equation

IG = IN ∩RG

holds if and only if IN is free as a K(G/N)-module.

Proof. Let Ḡ := G/N and note that IG = TrḠ(IN ), whereas IN ∩ RG = (IN )Ḡ. Now the
statement follows immediately from Lemma 3.2 with P = Ḡ.

Lemma 3.22. Let N < G be the maximal subgroup and S := ⊕p
k+1

m=1 nmVm. Then TrN (S)
is free as KḠ-module if and only if nm = 0 for all m satisfying pk+1 − p+ 1 ≤ m < pk+1.

Proof. Note that Vm viewed as K[∆]-module satisfies: Vm ∼= K[∆]/(∆m) and hence

∆i(Vm) ∼= ∆i ·K[∆]/(∆m) ∼= K[∆]/(∆m−i) ∼= Vm−i,

with Vj := 0 for j ≤ 0. Therefore one has

TrN (S) = (σp − 1)p
k−1(S) = ∆pk+1−p(S) = ⊕p−1

`=0 npk+1−`(∆
pk+1−p(Vpk+1−`))

∼= ⊕p−1
`=0 npk+1−`(Vp−`) ∈ KḠ−mod.

Now the statement in the lemma follows from the fact that Vp−` is a free KḠ - module
if and only if ` = 0.

Using (6), Kemper [14, Theorem 1.5] and the preceding lemmas, we obtain:

Proposition 3.23. Let N < G be the maximal subgroup. Then we have IG $ IN ∩RG if
and only if the KG-module R has a direct summand Vm with p(pk − 1) < m < pk+1. In
this case

grade
(√

TrGN (RN ) , H2(G,R)
)

= 0

and
depth(H2(G,R)) = dim(V G).

We think that it is quite common to find a Vm with p(pk − 1) < m < pk+1 in the
symmetric powers of V ∗. Unfortunately we were not able to prove any concrete instances
of this, apart from the ones found in Theorems 3.19 and 3.20.
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