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Abstract

Let g(X) € K(t1,...,tm)[X] be a generic polynomial for a group G in the sense that every
Galois extension N/L of infinite fields with group G and K < L is given by a specialization of
g(X). We prove that then also every Galois extension whose group is a subgroup of G is given
in this way.

Let K be a field and G a finite group. Let us call a monic, separable polynomial g(¢1,...,tm, X) €
K(ty,...,tm)[X] generic for G over K if the following two properties hold.

(1) The Galois group of g (as a polynomial in X over K (t1,...,ty)) is G.

(2) If L is an infinite field containing K and N/L is a Galois field extension with group G, then
there exist A1,..., A\, € L such that N is the splitting field of g(A,..., Ay, X) over L.

We call g descent-generic if it satisfies (1) and the stronger property

(2’) If L is an infinite field containing K and N/L is a Galois field extension with group H < G,
then there exist A1,..., A, € L such that N is the splitting field of g(A1,..., Ay, X) over L.

DeMeyer [2] proved that the existence of an irreducible descent-generic polynomial for a group
G over an infinite field K is equivalent to the existence of a generic extension S/R for G over K in
the sense of Saltman [6]. Ledet [5] proved that the existence of a generic polynomial for a group G
over an infinite field K is equivalent to the existence of a generic extension S/R of G over K. Thus
for K infinite the existence of a generic polynomial for G implies the existence of a descent-generic
polynomial for G. In this note we prove the following stronger result.

Theorem 1. Every generic polynomial g(t1, ..., tm,X) for G over K is descent-generic.

Proof. G has a faithful, transitive permutation representation G — S,,, by which it acts on the
rational function field K(x1,...,2,). K(x1,...,2,) is Galois over K (z1,...,z,)¢ with group G,
hence there exist pi,...,pm € K(z1,...,2,)¢ such that K(zi,...,2,) is the splitting field of
F(X):=g(p1,...,pm,X) over K(z1,...,2,)%. Write

F0 =[x =),
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where Z C K(z1,...,z,) is the set of zeros of f. Let dy be the least common multiple of the
denominators of the coefficients of g(X). Then dy(p1,...,pm) # 0. Let d be the numerator of
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do(p1,--.,pm). For every o € G\ {1} there exists a h, € Z such that o(hy,) # h,. Choose
0+# s € Klz1,...,7,] such that with S := K[z1,...,2,,s ] we have

ZU{p1,....pm}U{(0(he) —he) ' |1 £ 0 €GU{d '} C 8.

Now let N/L be a Galois extension of infinite fields with Galois group H < G. Then by Lemma 2
(see below) there exists an H-equivariant homomorphism ¢: S — N of K-algebras. Set A; := ¢ (p;).
Then \; € N =L, g(\1,..., A\, X) is defined (no zero-division), and we have

9L A, X) = (f(X)) = [ (X —w(h).
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Let N C N be the field extension of L generated by the ¢(h) with h € Z. We are done if we can
show that N’ = N. Indeed, for 1 # o € H we have

0+ (U(ha) - ho) =0 ((w(ha)) - w(ha)7

hence o does not fix N’. By Galois theory, N = N’ follows. O

The proof required the following lemma, which is more or less well-known (see Kuyk [4] and
Saltman [6]). We give a short proof for the convenience of the reader.

Lemma 2. Let G < S,, be a transitive permutation group and N/L a Galois extension of infinite
fields with group G. Let s € N[x1,...,z,] be a non-zero polynomial. Then there exist ay,...,a, €
N such that

(a) o(ci) = ag(y for all o € G, where o(a;) denotes the Galois action, and

(b) s(ar,...,a,) #0.

Proof. Let {o(¥) | 0 € G} be a normal basis of N/L. Fori € {1,...,n}, choose 0 € G with (1) = ¢
and set

Bi == Z op(¥) and f; == Zﬁf‘lxj,
j=1

pEG1L

where G; < G is the stabilizer of 1. Then the f3; are pairwise distinct and 7(83;) = Br(;) for all
7 € G. The determinant of the transition matrix from the z; to the 3; is [1i<;(B; — B;) # 0. Thus

the @ are algebraically independent over N, so g(z1,...,2,) := 5(51, ..., Bn) # 0. Hence by the
infinity of L there exist &1,...,&, € L such that g(&1,...,&,) # 0, and the a; == Y7 & - B/
satisfy (a) and (b). O

Remark. (a) Although the proofs of the results of DeMeyer [2] and Ledet [5] mentioned above are
constructive, one cannot use these proofs to obtain Theorem 1. Indeed, it is often necessary in
Ledet’s construction to add further indeterminates to t1, ..., t,. Therefore a polynomial with
a larger number of parameters may arise when passing from a generic polynomial to a generic
extension and from this to a descent-generic polynomial. Moreover, a generic polynomial need
not be irreducible, but DeMeyer’s construction always yields an irreducible descent-generic
polynomial.

(b) In DeMeyer’s proof that an irreducible descent-generic polynomial g gives rise to a generic
extension (the “easier” direction), the irreducibility of g is not used. Thus Ledet’s result is a
direct consequence of Theorem 1 together with DeMeyer’s result.



(¢) Theorem 1 is well-suited for applications. For example, the result, due to Abhyankar [1], that
every finite Galois extension of a field L containing F, is the splitting field of a polynomial of
the form N .

X +6 X7 4+t 1 X+t X (%)

(a “g-vectorial” polynomial) follows from the fact that (%) defines a generic polynomial for
GL,,(F,) (see Kemper and Mattig [3]).

(d) The property (1) of generic polynomials was not used in the proof of Theorem 1, so in fact
we proved that the properties (2) and (2’) are equivalent.
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