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Abstract

Let g(X) ∈ K(t1, . . . , tm)[X] be a generic polynomial for a group G in the sense that every
Galois extension N/L of infinite fields with group G and K ≤ L is given by a specialization of
g(X). We prove that then also every Galois extension whose group is a subgroup of G is given
in this way.

Let K be a field and G a finite group. Let us call a monic, separable polynomial g(t1, . . . , tm, X) ∈
K(t1, . . . , tm)[X] generic for G over K if the following two properties hold.

(1) The Galois group of g (as a polynomial in X over K(t1, . . . , tm)) is G.

(2) If L is an infinite field containing K and N/L is a Galois field extension with group G, then
there exist λ1, . . . , λm ∈ L such that N is the splitting field of g(λ1, . . . , λm, X) over L.

We call g descent-generic if it satisfies (1) and the stronger property

(2’) If L is an infinite field containing K and N/L is a Galois field extension with group H ≤ G,
then there exist λ1, . . . , λm ∈ L such that N is the splitting field of g(λ1, . . . , λm, X) over L.

DeMeyer [2] proved that the existence of an irreducible descent-generic polynomial for a group
G over an infinite field K is equivalent to the existence of a generic extension S/R for G over K in
the sense of Saltman [6]. Ledet [5] proved that the existence of a generic polynomial for a group G
over an infinite field K is equivalent to the existence of a generic extension S/R of G over K. Thus
for K infinite the existence of a generic polynomial for G implies the existence of a descent-generic
polynomial for G. In this note we prove the following stronger result.

Theorem 1. Every generic polynomial g(t1, . . . , tm, X) for G over K is descent-generic.

Proof. G has a faithful, transitive permutation representation G ↪→ Sn, by which it acts on the
rational function field K(x1, . . . , xn). K(x1, . . . , xn) is Galois over K(x1, . . . , xn)G with group G,
hence there exist p1, . . . , pm ∈ K(x1, . . . , xn)G such that K(x1, . . . , xn) is the splitting field of
f(X) := g(p1, . . . , pm, X) over K(x1, . . . , xn)G. Write

f(X) =
∏
h∈Z

(X − h),

where Z ⊂ K(x1, . . . , xn) is the set of zeros of f . Let d0 be the least common multiple of the
denominators of the coefficients of g(X). Then d0(p1, . . . , pm) 6= 0. Let d be the numerator of
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d0(p1, . . . , pm). For every σ ∈ G \ {1} there exists a hσ ∈ Z such that σ(hσ) 6= hσ. Choose
0 6= s ∈ K[x1, . . . , xn] such that with S := K[x1, . . . , xn, s

−1] we have

Z ∪ {p1, . . . , pm} ∪ {(σ(hσ)− hσ)−1 | 1 6= σ ∈ G} ∪ {d−1} ⊂ S.

Now let N/L be a Galois extension of infinite fields with Galois group H ≤ G. Then by Lemma 2
(see below) there exists an H-equivariant homomorphism ψ: S → N of K-algebras. Set λi := ψ(pi).
Then λi ∈ NH = L, g(λ1, . . . , λm, X) is defined (no zero-division), and we have

g(λ1, . . . , λm, X) = ψ(f(X)) =
∏
h∈Z

(X − ψ(h)) .

Let N ′ ⊆ N be the field extension of L generated by the ψ(h) with h ∈ Z. We are done if we can
show that N ′ = N . Indeed, for 1 6= σ ∈ H we have

0 6= ψ (σ(hσ)− hσ) = σ ((ψ(hσ))− ψ(hσ),

hence σ does not fix N ′. By Galois theory, N = N ′ follows.

The proof required the following lemma, which is more or less well-known (see Kuyk [4] and
Saltman [6]). We give a short proof for the convenience of the reader.

Lemma 2. Let G ≤ Sn be a transitive permutation group and N/L a Galois extension of infinite
fields with group G. Let s ∈ N [x1, . . . , xn] be a non-zero polynomial. Then there exist α1, . . . , αn ∈
N such that

(a) σ(αi) = ασ(i) for all σ ∈ G, where σ(αi) denotes the Galois action, and

(b) s(α1, . . . , αn) 6= 0.

Proof. Let {σ(ϑ) | σ ∈ G} be a normal basis of N/L. For i ∈ {1, . . . , n}, choose σ ∈ G with σ(1) = i
and set

βi :=
∑
ρ∈G1

σρ(ϑ) and β̃i :=
n∑
j=1

βj−1
i xj ,

where G1 ≤ G is the stabilizer of 1. Then the βi are pairwise distinct and τ(βi) = βτ(i) for all
τ ∈ G. The determinant of the transition matrix from the xi to the β̃i is

∏
i<j(βj − βi) 6= 0. Thus

the β̃i are algebraically independent over N , so g(x1, . . . , xn) := s(β̃1, . . . , β̃n) 6= 0. Hence by the
infinity of L there exist ξ1, . . . , ξn ∈ L such that g(ξ1, . . . , ξn) 6= 0, and the αi :=

∑n
j=1 ξj · β

j−1
i

satisfy (a) and (b).

Remark. (a) Although the proofs of the results of DeMeyer [2] and Ledet [5] mentioned above are
constructive, one cannot use these proofs to obtain Theorem 1. Indeed, it is often necessary in
Ledet’s construction to add further indeterminates to t1, . . . , tm. Therefore a polynomial with
a larger number of parameters may arise when passing from a generic polynomial to a generic
extension and from this to a descent-generic polynomial. Moreover, a generic polynomial need
not be irreducible, but DeMeyer’s construction always yields an irreducible descent-generic
polynomial.

(b) In DeMeyer’s proof that an irreducible descent-generic polynomial g gives rise to a generic
extension (the “easier” direction), the irreducibility of g is not used. Thus Ledet’s result is a
direct consequence of Theorem 1 together with DeMeyer’s result.
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(c) Theorem 1 is well-suited for applications. For example, the result, due to Abhyankar [1], that
every finite Galois extension of a field L containing Fq is the splitting field of a polynomial of
the form

Xqm + t1X
qm−1

+ · · ·+ tm−1X
q + tmX (∗)

(a “q-vectorial” polynomial) follows from the fact that (∗) defines a generic polynomial for
GLn(Fq) (see Kemper and Mattig [3]).

(d) The property (1) of generic polynomials was not used in the proof of Theorem 1, so in fact
we proved that the properties (2) and (2’) are equivalent.
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