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Abstract

We call a polynomial g(t1, . . . , tm, X) over a field K generic for a group G if it has Galois
group G as a polynomial in X, and if every Galois field extension N/L with K ⊆ L and
Gal(N/L) ≤ G arises as the splitting field of a suitable specialization g(λ1, . . . , λm, X) with
λi ∈ L. We discuss how the rationality of the invariant field of a faithful linear representation
leads to a generic polynomial which is often particularly simple and therefore useful. Then we
consider various examples and applications in characteristic 0 and in positive characteristic.
These include results on so-called vectorial polynomials and a generalization of an embedding
criterion given by Abhyankar. We give recursive formulas for generic polynomials over a field
of defining characteristic for the groups of upper unipotent and upper triangular matrices, and
explicit formulas for generic polynomials for the groups GU2(q2) and GO3(q).

Introduction

In inverse Galois theory (see Malle and Matzat [15]) one is interested in obtaining polynomials
which have a given group as Galois group. It is even more desirable to have a polynomial which
parametrizes all polynomials with a given group, or at least all Galois field extensions having this
group. A typical example is the polynomial X2 − t, which parametrizes all Z2-extensions over a
field of characteristic not 2. Such polynomials are called generic (see in Section 1 for a more precise
definition).

A classical way to obtain generic polynomials was given by Noether [18], who proved that
if the invariant field K(x1, . . . , xn)G of a permutation group G ≤ Sn is purely transcendental
(= rational) over K, then a generic polynomial for G exists, and has n parameters. The question
whether K(x1, . . . , xn)G is rational is known as Noether’s problem. In this paper we start by
showing that the rationality of the invariant field K(V )G of a faithful linear representation leads
to a generic polynomial in m = dim(V ) parameters. In fact, polynomials arising in this way
have the stronger property that they parametrize exactly all Galois extensions having a subgroup
of G as Galois group. We present a more general construction principle for generic polynomials
(having this subgroup-property), which depends on the rationality of the invariant field of a suitable
subfield of K(x1, . . . , xn). Constructing generic polynomials from linear representations does not
provide any new existence proofs for generic polynomials, since by the so-called no-name lemma (see
Miyata [16]) the rationality of K(V )G implies the rationality of the invariant field of some faithful
permutation representation. However, the generic polynomials arising from linear representations
usually have fewer parameters and are simpler than generic polynomials obtained from permutation
representations. Such polynomials are useful for theoretical and computational purposes. For
example, searches for polynomials with certain embedding properties become much easier to perform
if a simple generic polynomial is provided.

In the second section we consider some examples and applications. We obtain some particularly
nice generic polynomials for small groups in characteristic 0 (or coprime to the group order). In
∗The author gratefully acknowledges financial support by the Deutsche Forschungsgemeinschaft.
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characteristic dividing the group order, our methods reach much further. We give simple generic
polynomials for the general linear group, the special linear group, and the affine linear group,
each in defining characteristic. As applications, we prove that every finite Galois extension in
characteristic p is the splitting field of a vectorial polynomial (which was independently proved by
Abhyankar [1]), and generalize a theorem by Abhyankar [1] on certain central embedding problems.
Moreover, we obtain recursion formulas which give generic polynomials for the groups of upper
unipotent and upper triangular matrices, and we explicitly give generic polynomials for the unitary
groups GUn(q2) and the orthogonal groups GO3(q) for q odd, again in defining characteristic.

We would like to thank B. Heinrich Matzat for valuable comments on a first version of this paper
and for raising our interest in generic polynomials, and Shreeram S. Abhyankar for a brief but very
fruitful meeting in Dagstuhl. We also thank the anonymous referees for some valuable comments.

1 Generic polynomials and rationality

We start by giving a definition of a generic polynomial, which follows DeMeyer [5].

Definition 1. Let K be a field and G a finite group. A separable polynomial g(t1, . . . , tm, X) ∈
K(t1, . . . , tm)[X] with coefficients in the rational function field K(t1, . . . , tm) is called generic for
G over K if the following two properties hold.

(a) The Galois group of g (as a polynomial in X) is G.

(b) If L is an infinite field containing K and N/L is a Galois field extension with Galois group
H ≤ G, then there exist λ1, . . . , λm ∈ L such that N is the splitting field of g(λ1, . . . , λm, X)
over L.

Remark 2. (a) Many authors (see Smith [23], Lecacheux [12], Ledet [13]) define generic poly-
nomials as polynomials satisfying Definition 1(a), and Definition 1(b) only for H = G. It
was proved by Ledet [14] that the existence of a generic polynomial in this sense implies
the existence of a generic polynomial in the sense of Definition 1. All examples known to
the authors seem to suggest the stronger assertion that both concepts of generic polynomials
actually coincide.

(b) The main result of DeMeyer [5] states that the existence of a generic polynomial (in the sense
of Definition 1) for a group G over an infinite field K is equivalent to the existence of a generic
extension in the sense of Saltman [19] for G over K. DeMeyer gives a procedure to obtain a
generic extension from a generic polynomial and vice versa.

(c) By Saltman [20], the existence of a generic extension for G over an infinite field K is equivalent
to the condition that the invariant field K(Vreg)G of G acting by the regular representation is
retract rational over K (see the definition in [20]). /

For a finitely generated field extension L over K we say that ϕ1, . . . , ϕm ∈ L form a minimal
basis if they generate L over K and are algebraically independent. Thus L/K is purely transcen-
dental if and only if a minimal basis exists. The first goal is to prove the following general principle
for the construction of generic polynomials.

Theorem 3. Let K be a field, G a group acting on the rational function field K(x1, . . . , xn) by
permutations of the indeterminates, and let F be a G-stable intermediate field between K and
K(x1, . . . , xn) such that G acts faithfully on F . Assume that the fixed field FG is purely transcen-
dental over K. Then there exists a generic polynomial for G over K.
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More, precisely, let ϕ1, . . . , ϕm ∈ FG be a minimal basis and choose a finite, G-stable subset
M⊂ F such that F = FG(M). Set

f(X) :=
∏
y∈M

(X − y) ∈ FG[X].

Then f(X) = g(ϕ1, . . . , ϕm, X) with g ∈ K(t1, . . . , tm)[X], and g is a generic polynomial for G over
K.

Proof. Since the ϕi are algebraically independent, K(t1, . . . , tm) is isomorphic to FG, and a splitting
field of g is isomorphic to FG(M) = F . Since the y ∈M are pairwise distinct, f and therefore g is
separable, and

Gal(g(X)) = Gal(F/FG) = G.

It remains to prove property (b) of Definition 1. Choose 0 6= d0 ∈ K[t1, . . . , tm] such that d0 · g ∈
K[t1, . . . , tm, X], and let d ∈ K[x1, . . . , xn] be the numerator of d0(ϕ1, . . . , ϕm). Furthermore,
choose a non-zero polynomial h ∈ K[x1, . . . , xn] such that K[x1, . . . , xn, h

−1] contains d−1, M, all
ϕi, and discrX(f)−1.

Let N/L be a Galois field extension with group H ≤ G as in Definition 1(b). By Lemma 4 (see
below) there exist α1, . . . , αn ∈ N such that

σ(αi) = ασ(i) for σ ∈ H, and h(α1, . . . , αn) 6= 0.

Here σ(i) is defined by the permutation action of G on the xi, e.i., σ(xi) = xσ(i). Thus

Ψ: K[x1, . . . , xn, h
−1]→ N, xi 7→ αi

defines a homomorphism of K-algebras which commutes with the H-actions. Set λi := Ψ(ϕi). Then
λi ∈ NH = L, and g(λ1, . . . , λm, X) is well-defined since d−1 ∈ K[x1, . . . , xn, h

−1]. We have∏
y∈M

(X −Ψ(y)) = Ψ(f) = g(λ1, . . . , λm, X).

Therefore N ′ := L (Ψ(M)) ⊆ N is the splitting field of g(λ1, . . . , λm, X) over L. By way of
contradiction, assume that N ′ $ N . By Galois theory, there exists a σ ∈ H \ {1} which fixes N ′

element-wise. Again by Galois theory and since F = FG(M), there is a y ∈M such that σ(y) 6= y.
Therefore σ(y) − y is a divisor of discrX(f), and it follows that σ(Ψ(y)) − Ψ(y) = Ψ (σ(y)− y)
divides Ψ (discrX(f)). But Ψ (discrX(f)) 6= 0 since discrX(f)−1 ∈ K[x1, . . . , xn, h

−1]. It follows
that σ(Ψ(y)) 6= Ψ(y), in contradiction to the statement that σ fixes N ′. This completes the
proof.

The proof required the following lemma. We omit the proof, since the lemma is implicitly
contained in Kuyk [11]. See also Saltman [19].

Lemma 4. Let G ≤ Sn be a permutation group and N/L a Galois extension of infinite fields with
Galois group G. Let f ∈ N [x1, . . . , xn] be a non-zero polynomial. Then there exist α1, . . . , αn ∈ N
such that

(a) σ(αi) = ασ(i) for all σ ∈ G, where σ(αi) denotes the Galois action, and

(b) f(α1, . . . , αn) 6= 0.

Remark 5. (a) The referee of this paper pointed out to us that under the hypotheses of Theo-
rem 3 the invariant field K(x1, . . . , xn)G is retract rational. Indeed, we have an epimorphism

(K(x1, . . . , xn)⊗K F )G → K(x1, . . . , xn)G, f ⊗ g 7→ fg,

for which the map f 7→ f⊗1 is a section. But (K(x1, . . . , xn)⊗K F )G is purely transcendental
over FG by the no-name lemma (see Miyata [16]), and therefore purely transcendental over
K by the hypothesis. From this the retract rationality follows.
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(b) All examples of generic polynomials known to the authors can be viewed as instances of The-
orem 3. This includes the generic polynomials for many abelian groups given by Saltman [19,
Theorem 2.1], which in some cases exist even though Noether’s problem has a negative answer.
/

In geometric terms the situation of Theorem 3 is as follows: G acts faithfully on a reduced
affine K-scheme X of finite type such that the quotient X//G is isomorphic to an affine m-space
A
m(K). Moreover, we have a G-equivariant, dominant rational morphism V → X with V a

permutation representation of G. Indeed, one can chooseM to be integral over K[ϕ1, . . . , ϕm], and
X as the spectrum of the K-algebra R generated by M and the ϕi. Then X//G = Spec(RG) =
Spec(K[ϕ1, . . . , ϕn]). The dominant rational morphism V → X comes from the embedding F ⊆
K(x1, . . . , xn) (see Hartshorne [6, Chapter I, Theorem 4.4]).

A reduced K-scheme X of finite type with a faithful G-action, together with a G-equivariant,
dominant rational morphism V → X is often called a compression of V . The minimal dimension
of a compression X of V is called the essential dimension of G (see Buhler and Reichstein [3]) and
denoted by edK(G). The essential dimension does not depend on the choice of the faithful linear
representation V . It follows that the number m of parameters of a generic polynomial obtained
from Theorem 3 is bounded from below by the essential dimension edK(G). In fact, Buhler and
Reichstein [3, Theorem 7.5] proved that edK(G) is the minimal number of parameters in a so-
called versal polynomial for G, but this is weaker than a generic polynomial, or even a polynomial
satisfying Definition 1(a) and Definition 1(b) for H = G.
Example 6. In this example we assume that the characteristic of K is zero.

(a) If G is abelian of rank r, then edK(G) ≥ r, with equality if K contains a primitive e-th root of
unity with e = exp(G) (Buhler and Reichstein [3, Theorem 6.1]). Thus a generic polynomial
for G has at least r parameters.

(b) If G is not cyclic or dihedral of order not divisible by 4, then edK(G) > 1 (Buhler and
Reichstein [3, Theorem 6.2]). Thus generic polynomials with only one parameter can only
exist for cyclic groups or dihedral groups of order not divisible by 4. /

An important question is which schemes with a G-action arise as compressions of permutation
representations. This is clearly the case if V is a faithful linear representation, since V is an
epimorphic image of a free KG-module of finite rank, i.e., of a direct sum of copies of the regular
representation. Using this, we deduce that a positive answer to Noether’s problem for a faithful
linear representation of G leads to a generic polynomial. If V is a linear representation of G, we
write K[V ] for the symmetric algebra of V ∗ and K(V ) for the field of fractions of K[V ]. K(V ) is a
rational function field with a basis of V ∗ as indeterminates, and can be interpreted as the field of
rational function on V . G acts on K(V ), and we denote the invariant field by K(V )G.

Theorem 7. Let G be a finite group and V an m-dimensional, faithful linear representation of G
over a field K. Assume that K(V )G = K(ϕ1, . . . , ϕm) (which implies that the ϕi form a minimal
basis), and choose a finite, G-stable subset M⊂ K(V ) such that K(V ) = K(V )G(M). Set

f(X) :=
∏
y∈M

(X − y) ∈ K(V )G[X],

so f(X) = g(ϕ1, . . . , ϕm, X) with g ∈ K(ϕ1, . . . , ϕm)[X]. Then g(X) is a generic polynomial for G
over K.

If, moreover, the ϕi are homogeneous with

deg(ϕ1) = 1 and deg(ϕ2) = . . . = deg(ϕm) = 0, (1)

and if M⊂ V ∗, then also g(1, t2, . . . , tm, X) is a generic polynomial (in m− 1 parameters) for G.
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Remark 8. By Kemper [8, Proposition 1.1], a minimal basis ϕ1, . . . , ϕm satisfying (1) exists if and
only if there is a minimal basis of homogeneous rational invariants, and the only element of G acting
as a scalar matrix is the identity. /

Proof of Theorem 7. The first assertion follows immediately by Theorem 3 since K(V ) can be em-
bedded G-equivariantly into the function field K(Ṽ ) of a permutation module Ṽ (see above).

To prove the second assertion we take F = K(V )0, the field of homogeneous rational functions
of degree 0. Then K(V ) = F (ϕ1), since h · ϕ− deg(h)

1 lies in F0 for any homogeneous h ∈ K(V ).
This implies that G acts faithfully on F . We now claim that FG = K(ϕ2, . . . , ϕm). Writing
N := K(ϕ2, . . . , ϕm), we have N ≤ FG. The invariant ϕ1 is transcendental over FG, and on the
other hand K(V )G has transcendence degree 1 over N , hence FG/N is an algebraic extension. But
K(V )G is a purely transcendental extension of N containing FG, so we conclude that FG = N .

Now {y/ϕ1 | y ∈ M} ⊂ F is a G-stable subset which generates F as an extension of FG. We
have ∏

y∈M
(X − y/ϕ1) = ϕ

−|M|
1 · f(ϕ1 ·X) = g(1, ϕ2, . . . , ϕm, X),

so the second assertion follows by Theorem 3.

2 Applications

We now consider various applications of Theorem 7, which divide naturally into two cases: the
modular case where |G| is divisible by the characteristic of K, and the non-modular case, where the
characteristic is 0 or coprime to the group order.

2.1 Generic polynomials in characteristic 0 or coprime to |G|
In this section we always assume that the characteristic of K does not divide the group order |G|.

Abelian groups. Let G be an abelian group of exponent e and assume that K contains a primitive
e-th root of unity. Then G is isomorphic to a linear group of the form

{

ζ1 . . .
ζm

 | ζi ∈ K, ζnii = 1}

with ni positive integers. The invariant ring is generated by xn1
1 , . . . , xnmm . With M := {ζxi | i =

1, . . . ,m, ζni = 1}, Theorem 7 yields the generic polynomial

g(t1, . . . , tm, X) = (Xn1 − t1) · · · (Xnm − tm).

Thus Kummer theory can be viewed as a special example of Theorem 7. By Example 6(a), g has
the least possible number of parameters.

Z3 and Z4. We want to obtain generic polynomials for the cyclic groups Z3 and Z4 of orders 3
and 4 without making assumptions on roots of unity in the ground field. For G = Z3 we use the
representation given by the matrix

(
0 −1
1 −1

)
. With x3 := −x1 − x2 and s2 := x1x2 + x1x3 + x2x3 we

have rational invariants

ϕ1 :=
x1x2x3

s2
, ϕ2 :=

s3
2

(x1x2x3)2
, ϕ3 :=

(x1 − x2)(x1 − x3)(x2 − x3)
x1x2x3

,

which generate the invariant field and satisfy the discriminant relation

ϕ2
3 = −27− 4ϕ2.
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Therefore ϕ1 and ϕ3 form a minimal basis if char(K) 6= 2, and withM := {2x1, 2x2, 2x3} we obtain∏
y∈M

(X − y) = X3 − ϕ2
1(27 + ϕ2

3) ·X + 2ϕ3
1(27 + ϕ2

3).

The second part of Theorem 7 (with a slight change of variables) leads to the generic polynomial

g(t,X) = X3 − 3(1 + 3t2) ·X + 2(1 + 3t2)

for G = Z3, which is over any field K with char(K) /∈ {2, 3}. The generic polynomial for Z3 given
by Seidelmann [21] has two parameters and is somewhat more complicated.

For G = Z4 we use the representation given by the matrix
(

0 1
−1 0

)
. We have invariants

ϕ1 := x2
1 + x2

2 and ϕ2 :=
x2

1 − x2
2

x1x2
,

which satisfy

(ϕ2
2 + 4)x4

1 − ϕ1(ϕ2
2 + 4)x2

1 + ϕ2
1 = 0 and x2 =

(ϕ2
2 + 4)x3

1 − ϕ1(ϕ2
2 + 2)x1

ϕ1ϕ2
.

Therefore K(x1, x2)G = K(ϕ1, ϕ2). Taking M = {±ϕ1/x1,±ϕ1/x2}, we obtain∏
y∈M

(X − y) = X4 − ϕ1(ϕ2
2 + 4)X2 + ϕ2

1(ϕ2
2 + 4).

Replacing ϕ1 by −ϕ1/2 and ϕ2 by 2ϕ2, we obtain

g(t1, t2, X) = X4 + 2t1(t22 + 1) ·X2 + t21(t22 + 1)

as a generic polynomial for Z4 over any field K of characteristic not 2. Again this is simpler than
the generic polynomial given by Seidelmann [21].

Dihedral groups. The dihedral group G = Dn of order 2n has a faithful two-dimensional repre-
sentation over a field containing ζn+ζ−1

n , with ζn a primitive n-th root of unity. This representation
is a reflection representation, hence the invariant ring is isomorphic to a polynomial ring by the
theorem of Shephard, Todd and Chevalley. Therefore a generic polynomial for G over K exists. For
n = 2, we obtain

g(t1, t2, X) = X4 + t1X
2 + t22

as a generic polynomial for the Klein 4-group. For n = 4, we have

g(t1, t2, X) = X4 + t1X
2 + t2

as a generic polynomial for D4. Both generic polynomials are over any field which is not of charac-
teristic 2 (since ζn + ζ−1

n = −2 or 0 for n = 2 or 4, respectively), and they are much simpler than
the ones given by Seidelmann [21]. By Example 6(b), the number of parameters is minimal. The
existence of generic polynomials for the dihedral groups D4 and D8 was proved by Black [2].

(Near-) reflection groups. Some other interesting groups have reflection representations, such
as SL2(3). Since the (two-dimensional) reflection representation is defined over a field containing√
−3, we obtain a generic polynomial in two parameters over such a field.

By Kemper [8, Corollary 1.4] the following condition suffices to guarantee that the invariant field
of G is purely transcendental: there exists a reflection group G̃ containing G which is generated by
G together with the scalar matrices contained in G̃. In fact, in this case the fields of invariants of
degree 0 of G and of G̃ coincide. In this way, groups such as A5 can be reached, since {±1} × A5

occurs as the complex reflection group G23 in the classification of Shephard and Todd [22]. We
obtain a generic polynomial g(t1, t2, X) for A5 over a field containing

√
5. This polynomial is of

degree 12 and can be printed in about five lines. In similar ways, there exists a generic polynomial
in two parameters for the group PSL2(7) over Q(

√
−7).
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2.2 Modular applications

Some groups have faithful linear representations of particularly small dimension over a field of
characteristic dividing the group order. Typical examples are classical groups with their defining
representation. This has two consequences. First, the chances of finding a minimal basis for the
invariant field of such a representation are fairly high, and second, the resulting generic polynomials
have few parameters and are quite simple. In this section we will give a few examples.

The general and special linear group. Let V be an m-dimensional vector space over the finite
field Fq. Then we have∏

y∈V ∗
(X − y) = Xqm + c1X

qm−1
+ · · ·+ cm−1X

q + dq−1X (2)

(see Wilkerson [25]). Obviously the ci are invariant under G := GL(V ), and so is cm := dq−1.
The ci are called the Dickson invariants, and generate the invariant ring Fq[V ]G. This can be
seen by a Galois theoretic argument (again see Wilkerson [25]). Setting M := V ∗, we deduce from
Theorem 7 that

g(t1, . . . , tm, X) = Xqm + t1X
qm−1

+ · · ·+ tm−1X
q + tmX (3)

is a generic polynomial for G = GLm(q) over Fq. Dividing by X also yields a generic polynomial.
The polynomial d in Equation (2) turns out to be SL(V )-invariant, and it is easy to see that for
an intermediate group G between between SL(V ) and GL(V ) with [GL(V ) : G] = e the invariants
c1, . . . , cm−1, d

(q−1)/e form a minimal basis of K(V )G. Hence G has the generic polynomial

g(t1, . . . , tm, X) = Xqm−1 + t1X
qm−1−1 + · · ·+ tm−1X

q−1 + tem.

A polynomial of the form (3) (with ti arbitrary) is called q-vectorial of q-degree m, since the
evaluation map given by g(X) is Fq-linear (see Abhyankar [1]). Since every finite group has a
faithful representation over Fq, we see that every finite Galois extension N of a field L containing
Fq is the splitting field of a q-vectorial polynomial g(X) over L. Moreover, if the Galois group has a
faithful linear representation of degree m over Fq, then the q-degree of g(X) can be chosen to be m.
This was independently proved by Abhyankar [1].

The following theorem gives polynomials which are “generic” for field extensions for which certain
embedding problems are solvable. Here we call an embedding problem G → Gal(N/L) solvable if
there exists a Galois extension M of L containing N , and an isomorphism G

∼→ Gal(M/L) such
that the composition of this isomorphism with the restriction map Gal(M/L) → Gal(N/L) is the
given epimorphism G → Gal(N/L). For general information on embedding problems we refer the
reader to Malle and Matzat [15, Chapter IV].

Theorem 9. Let G ≤ GLn(q) be a linear group over a finite field, and let Z ≤ G be a subgroup
consisting of scalar matrices. Set H := G/Z and e := |Z|. Let N be a Galois extension of a field
L containing Fq such that Gal(N/L) = H and the embedding problem G → Gal(N/L) is solvable.
Then N is the splitting field of a polynomial of the form

g(X) = X(qm−1)/e + λ1X
(qm−1−1)/e + · · ·+ λn−1X

(q−1)/e + λn

with λi ∈ L.

Proof. Let M/K be a solution of the embedding problem G → Gal(N/L). By the above remark,
M is the splitting field of a polynomial

h(X) = Xqm−1 + λ1X
qm−1−1 + · · ·+ λn−1X

q−1 + λn
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with λi ∈ L, and Z acts on the roots of h(X) by multiplication with e-th roots of unity. Let N ′ be
the extension of L generated by the e-th powers of the roots of h(X). Then N ′ is the splitting field
of g(X), with g(X) as in the statement of the theorem. We have to show that N ′ = N . Clearly
Z fixes N ′, hence N ′ ⊆ MZ = N . By Galois theory it remains to show that every σ ∈ G fixing
N ′ lies in Z. So assume that σ(ϑe) = ϑe for all roots ϑ of h(X). Then ϑ is an eigenvector of σ
with respect to an e-th root of unity as eigenvalue. Observe that the roots of X · h(X) form an
m-dimensional Fq-vector space. By the above, this vector space consists entirely of eigenvectors. If
0 6= ϑ1, ϑ2 were two eigenvectors with distinct eigenvalues, then ϑ1 +ϑ2 would not be an eigenvector.
Therefore there exists only one eigenvalue, and we conclude that σ is a scalar matrix lying in Z.
This completes the proof.

Remark 10. Abhyankar [1] proved the following special case of Theorem 9: G is an intermediate
group between SLm(q) and GLm(q), where q − 1 divides m, and Z is the group of all scalar
matrices. Under these hypotheses, he also obtained a converse statement: If a Galois extension
N/L with group G/Z comes from a polynomial g(X) as in Theorem 9, then the embedding problem
G → Gal(N/L) is solvable. Under the weaker hypotheses of Theorem 9, this converse is false in
general (for example, m = 1, Z = G and L = N = Fq, an algebraic closure). /

Affine linear groups. Further interesting examples are given by the affine linear group or the
special affine linear groups, or intermediate groups. Suppose that H is an intermediate group
between SLm(q) and GLm(q), and let e be the index of H in GLm(q). The corresponding affine
group is G := F

m
q oH, where H acts naturally on Fmq . For H = GLn(q) we obtain the affine linear

group AGLm(q). A faithful linear representation is given by

((a1, . . . , am), A) 7→


1 0 · · · 0
a1

... A
am

 ,

where (a1, . . . , am) ∈ Fmq and A ∈ H. Let the action on indeterminates x0, x1, . . . , xm be given by
this representation. We have invariants

c0 :=
∏

a1,...,am∈Fq

(x0 + a1x1 + · · ·+ amxm)

and furthermore the Dickson invariants c1, . . . , cm−1 and b := d(q−1)/e arising from the equation∏
a1,...,am∈Fq

(X + a1x1 + · · ·+ amxm) = Xqm + c1X
qm−1

+ · · ·+ cm−1X
q + dq−1X

(see (2)). The only common zero of c0, . . . , cm−1, b in Fq
m

is the origin and the degree product of
these invariants equals |G|, hence by Smith [24, Prop. 5.5.5] we conclude that

Fq[x0, . . . , xn]G = Fq[c0, . . . , cm−1, b].

Thus we have a minimal basis of Fq(x0, . . . , xn)G, which we change now in order to apply the second
part of Theorem 7. Set

ϕ0 := c0/b
e, ϕi := ϕq

m−i−qm
0 · ci (0 < i < m), and ϕm := ϕ

(1−qm)/e
0 · b.

Then c0 = ϕq
m

0 ϕem, ci = ϕq
m−qm−i

0 · ϕi (0 < i < m), and b = ϕ
(qm−1)/e
0 · ϕm. Hence the ϕi

provide another minimal basis, and deg(ϕ0) = 1 and deg(ϕi) = 0 for i > 0. Choosing M :=
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{−x0 + a1x1 + · · ·+ amxm | ai ∈ Fq}, we obtain from (2)∏
y∈M

(X − y) = (X + x0)q
m

+ c1(X + x0)q
m−1

+ · · ·+ cm−1(X + x0)q + dq−1(X + x0)

= Xqm + c1X
qm−1

+ · · ·+ cm−1X
q + beX + c0

= Xqm + ϕq
m−qm−1

0 ϕ1 ·Xqm−1
+ · · ·+ ϕq

m−q
0 ϕm−1 ·Xq + ϕq

m−1
0 ϕem ·X + ϕq

m

0 ϕem.

By Theorem 7, this yields the generic polynomial given in the following theorem.

Theorem 11. Let SLm(q) ≤ H ≤ GLm(q) with e := [GLn(q) : H], and let G := F
m
q o H be the

corresponding affine group. Then

g(X) = Xqm + t1 ·Xqm−1
+ · · ·+ tm−1 ·Xq + tem ·X + tem

is a generic polynomial for G over Fq.

This is in particular interesting for m = 1. Here we obtain the generic polynomial

g(X) = Xq + teX + te.

Specializing further to e = q − 1 and replacing X by tX, we obtain the Artin-Schreier polynomial
g(X) = Xq +X + t as a generic polynomial for the additive group Fq. Thus the above polynomial
may be viewed as a generalization of Artin-Schreier polynomials.

P -groups. If K is a field of positive characteristic p and G a p-group, then by Miyata [16],
K(V )G is purely transcendental over K for every representation V . Thus by Theorem 7 there
exists a generic polynomial for every p-group. Miyata’s proof uses the fact that with an appropriate
choice of a basis the elements of G act as upper triangular matrices with 1’s on the main diagonal.
Of particular interest is the group Um(q) of all upper triangular matrices with entries in Fq and 1’s
on the main diagonal, since every p-group can be embedded into some Um(q). The invariant ring
of Um(q) is isomorphic to a polynomial ring generated by the products over orbits of the variables
x1, . . . , xm (see Smith [24, Proposition 5.5.5]). The following theorem gives a recursion formula for
the ensuing generic polynomials for Um(q).

Theorem 12. Define polynomials gm(X) ∈ Fq(t1, . . . , tm−1)[X] by g2(X) := Xq −X − t1 and the
recursion formula

gm+1(X) := gm(X)q − tq−1
m−1gm(X)− tm.

Then gm(X) is a generic polynomial for Um(q) over Fq. Therefore a Galois field extension N/L
with Fq ⊆ L has a p-group as Galois group if and only if N is the splitting field of a specialization
of a polynomial gm(X) as above.

Proof. For Um+1(q) we have generating invariants

ϕ0 = x1 and ϕi =
∏

a1,...,ai∈Fq

(a1x1 + · · ·+ aixi + xi+1) (0 < i ≤ m).

In order to use Theorem 7 we choose Mm+1 = {a1x1 + · · ·+ amxm + xm+1}. Set

fm+1(X) :=
∏

y∈Mm+1

(X − y) and

hm+1(X) :=
∏

a1,...,am∈Fq

(X − (a1x1 + · · ·+ amxm)) .
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Then
fm+1(X) = hm+1(X − xm+1) = hm+1(X)− hm+1(xm+1) = hm+1(X)− ϕm, (4)

since hm+1(X) is a q-vectorial polynomial by Equation (2). We have

h2(X) =
∏
a∈Fq

(X − ax1) = Xq −X

and hence f2(X) = Xq −X − ϕ1, which yields g2(X). We have to prove the recursion formula

fm+1(X) = fm(X)q − ϕq−1
m−1fm(X)− ϕm,

which by (4) is equivalent to

hm+1(X) = hm(X)q − ϕq−1
m−1hm(X).

Both sides are monic of degree qm in X, so we must show that for b1, . . . , bm ∈ Fq, X = b1x1 +
· · ·+ bmxm is a zero of the right hand side. But we have

hm(b1x1 + · · ·+ bmxm) =
∏

a1,...,am−1∈Fq

((b1 − a1)x1 + · · ·+ (bm−1 − am−1)xm−1 + bmxm) =

= hm(bmxm) = bmϕm−1,

hence the right hand side specializes to bqmϕ
q
m−1 − bmϕ

q
m−1 = 0. This completes the proof.

Example 13. For U3(p), which is the Heisenberg group Hp3 , we obtain

g(X) = Xp2
− (1 + tp−1

1 )Xp + tp−1
1 X − t2

as a generic polynomial over Fp. This ties in nicely with a result by Ledet [13], who constructed
generic polynomials for Hp3 over fields of characteristic not equal to p

Upper triangular matrices. It is even easier to give a recursion formula for generic polynomials
for the group of upper triangular matrices in GLn(q).

Proposition 14. Define polynomials gm(X) ∈ Fq(t1, . . . , tm)[X] by g1(X) := Xq − t1X and the
recursion formula

gm(X) := gm−1(X)q − tmgm−1(X).

Then gm(X) is a generic polynomial for the group Bm(q) of all upper triangular matrices in GLm(q).

Proof. We have generating invariants ϕ1 := xq−1
1 and

ϕi :=
∏

a1,...,ai−1∈Fq

(a1x1 + · · ·+ ai−1xi−1 + xi)q−1 (2 ≤ i ≤ n).

Choose Mm := {a1x1 + · · ·+ amxm | a1, . . . , am ∈ Fq} and set fm(X) :=
∏
y∈Mm

(X − y). Then

f1 = Xq − ϕ1X,

which yields g1 as a generic polynomial. Moreover, we have

fm(X) =
∏
a∈Fq

fm−1(X−amxm) = fm−1(X)q−fm−1(X) ·fm−1(xm)q−1 = fm−1(X)q−ϕmfm−1(X),

which proves the recursion formula.
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The unitary group GU2(q2). It is known by Carlisle and Kropholler [4] that the invariant field
of the general unitary group GUn(q2) acting on the natural module is rational. We give a generic
polynomial for the case n = 2.

Proposition 15. Let G = GU2(q2) be the general unitary group defined over Fq2 . Then the poly-
nomial

g(X) = X(q2−1)(q+1) − tq−1
1 Xq(q2−1) − t2Xq2−1 + tq

2−1
1

is generic for G over Fq2 .

Proof. We choose the hermitian form as xq1x2 +x1x
q
2. Let V be the natural KG-module. By Carlisle

and Kropholler [4], a minimal basis of Fq2(V )G is given by

ϕ1 := xq1x2 + x1x
q
2 and ϕ2 :=

xq
3

1 x2 + x1x
q3

2

ϕ1
.

Choose ω ∈ Fq2 with ωq−1 = −1. The factorization ϕ1 = x2

∏
a∈Fq (x1 + aωx2) implies that

M := {bx2 | b ∈ F×q2} ∪ {b(x1 + aωx2) | b ∈ F×q2 , a ∈ Fq}

is G-stable. We have

∏
y∈M

(X − y) = (Xq2−1 − xq
2−1

2 )
∏
a∈Fq

(
Xq2−1 − (x1 + aωx2)q

2

x1 + aωx2

)

=

(
x2X

q2−1 − xq
2

2

)(
x1X

q2−1 − xq
2

1

)q
+
(
x1X

q2−1 − xq
2

1

)(
x2X

q2−1 − xq
2

2

)q
ϕ1

= X(q2−1)(q+1) − ϕq−1
1 Xq(q2−1) − ϕ2X

q2−1 + ϕq
2−1

1 .

This yields the generic polynomial g(X).

The orthogonal groups GO3(q). It is a bit more difficult to give generic polynomials for the
orthogonal groups GO3(q).

Proposition 16. Let G = GO3(q) be the general orthogonal group with q an odd prime power.
Then the polynomial

g(X) = Xq2−1 − t3Xq−1 + tq−1
2 − F (t2)− F (0)

t2

with F (Y ) :=
(
t1X

2(q−1) − 2(Y + t
(q+1)/2
1 )Xq−1 + tq1

)(q+1)/2

is generic for G over Fq. Observe

that g(X) is monic of degree q2 − 1 and has coefficients in Fq[t1, t2, t3].

Proof. We may assume that G is defined by the quadratic form x2
1 − x2

2 + x2
3. By Carlisle and

Kropholler [4], the invariants xq
i+1

1 − xq
i+1

2 + xq
i+1

3 (0 ≤ i ≤ 2) form a minimal basis for K(V )G,
where K = Fq, and V is the natural module. We choose generators

ϕ1 := x2
1 − x2

2 + x2
3,

ϕ2 := xq+1
1 − xq+1

2 + xq+1
3 − ϕ

q+1
2

1 ,

ϕ3 :=
xq

2+1
1 − xq

2+1
2 + xq

2+1
3 − ϕ

q2+1
2

1

ϕ2
.

(In fact, the ϕi generate K[V ]G as a polynomial ring, but we do not need this result.)
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For v ∈ V we denote the linear form on V given by w 7→ 〈v, w〉 by v∗ ∈ V ∗. By Witt’s extension
theorem, the set M := {v∗ | v ∈ V \ {0} is isotropic} is one G-orbit, which has length q2 − 1 (see
Jacobson [7, Section 6.10]). We have that x1 − x2 ∈M is a divisor of ϕ2. Hence all v∗ ∈M divide
ϕ2. We can therefore choose a system of representatives M0 of the K×-orbits on M such that

ϕ2 =
∏
y∈M0

y.

Now we have

f(X) :=
∏
y∈M

(X − y) =
∏
y∈M0

(Xq−1 − yq−1) =
1
ϕ2

∏
y∈M0

(yXq−1 − yq).

The K-linear map Φ: V ∗ → K[V ][X], y 7→ yXq−1 − yq extends to a homomorphism Φ: K[V ] →
K[V ][X] of K-algebras, which allows us to express the above equation as f(X) = Φ(ϕ2)/ϕ2. We
have

Φ(x2
i ) = x2

iX
2(q−1) − 2xq+1

i Xq−1 + x2q
i and

Φ(xq+1
i ) = xq+1

i Xq2−1 − x2q
i X

q(q−1) − xq
2+1
i Xq−1 + xq

2+q
i ,

which after an easy computation leads to

ϕ2f(X) = ϕ2

(
Xq2−1 − ϕ3X

q−1 + ϕq−1
2

)
+
(
ϕ1X

2(q−1) − 2ϕ
q+1

2
1 Xq−1 + ϕq1

) q+1
2

−
(
ϕ1X

2(q−1) − 2(ϕ2 + ϕ
q+1

2
1 )Xq−1 + ϕq1

) q+1
2
.

From this the claimed generic polynomial g(X) follows by Theorem 7.

Other reflection groups. It is not true in the modular case that the invariant ring of a reflec-
tion group is always isomorphic to a polynomial ring (see Nakajima [17], Kemper and Malle [9]).
However, it is true by Kemper and Malle [10] that the invariant field of every finite irreducible
reflection group is purely transcendental over the ground field. Therefore every group which has a
faithful irreducible reflection representation over a field K has a generic polynomial over K. Since
the minimal bases are given explicitly in [10], these generic polynomials could be computed (given
enough storage space and time for the hard cases). In particular, the general linear, orthogonal,
symplectic and unitary groups have generic polynomials over their field of definition. (Here the
rationality of the invariant fields is already known by Carlisle and Kropholler [4].)

The rationality of the invariant field can also be shown for some groups which are “close”
to reflection groups (see Kemper [8]). This applies, for example, to the commutator subgroups
Ωn(q) of GOn(q) for q and n odd. These groups are simple, and Ω3(q) ∼= PSL2(q). The second
part of Theorem 7 therefore yields the existence of generic polynomials for PSL2(q) over Fq in two
parameters. Although these polynomials can be computed explicitly for given values of q, no general
formula is known to date.
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