
On the Cohen-Macaulay Property of ModularInvariant RingsGregor Kemper�IWR, Universit�at Heidelberg, Im Neuenheimer Feld 36869 120 Heidelberg, Germanyemail Gregor.Kemper@iwr.uni-heidelberg.deAugust 11, 1998AbstractIf V is a faithful module for a �nite groupG over a �eld of characteristicp, then the ring of invariants need not be Cohen-Macaulay if p divides theorder of G. In this article the cohomology of G is used to study thequestion of Cohen-Macaulayness of the invariant ring.One of the results is a classi�cation of all groups for which the invari-ant ring with respect to the regular representation is Cohen-Macaulay.Moreover, it is proved that if p divides the order of G, then the ring ofvector invariants of su�ciently many copies of V is not Cohen-Macaulay.A further result is that if G is a p-group and the invariant ring is Cohen-Macaulay, then G is a bireection group, i.e., it is generated by elementswhich �x a subspace of V of codimension at most 2.IntroductionLet G � GL(V ) be a �nite group acting on a vector space V of dimension nover a �eld K. Then G acts on the symmetric algebra R = S(V �) of the dual ofV , which is a polynomial ring over K, and we consider the invariant ring RG.By the Noether normalization lemma, there exist homogeneous f1; : : : ; fn 2 RGsuch that RG is �nitely generated as a module over A = K[f1; : : : ; fn]. RG iscalled Cohen-Macaulay if it is a free module over A. This is independent ofthe choice of the set ff1; : : : ; fng. An equivalent condition is that f1; : : : ; fnform an RG-regular sequence (see the beginning of Section 1). RG is alwaysCohen-Macaulay if the characteristic p of K does not divide the order of G. If,however, jGj is a multiple of p (which we call the modular case), then RG is ingeneral not Cohen-Macaulay. At the moment, the knowledge about which linear�The author thanks Ian Hughes, Eddy Campbell, Jim Shank, and David Wehlau for theirhospitality during his visit to Queen's University in Kingston, Ontario, where most of thispaper was prepared. 1



The Cohen-Macaulay Property 2groups in the modular case have invariant rings which are Cohen-Macaulay andwhich ones do not is very sketchy, to say the least. The only classes of groupswhere we have a complete answer are the cyclic groups, which were treatedby Ellingsrud and Skjelbred [10], and, more generally, the so-called shallowgroups (Campbell et al. [7]). For further references relevant to this question, werefer the reader to the books by Smith [17] and Benson [4], which also provideintroductory texts on invariant theory of �nite groups.In the �rst section of this paper we relate the regularity of sequencesf1; : : : ; fn 2 RG to the cohomology H�(G;R) of G with values in the polyno-mial ring R. These cohomology groups are viewed as modules over RG, and it isshown that, loosely speaking, large annihilators of elements of the cohomologydestroy the Cohen-Macaulay property. As a �rst application, it is proved thatif H � G is a strongly p-embedded subgroup, then depth(RH) = depth(RG).This is a partial converse to a result of Campbell et al. [6].In Section 2, geometric arguments are used to prove that the annihilatormentioned above is large enough in many cases. This leads to the �rst mainresult (Theorem 2.3) and the corollary that in the modular case the ring ofsu�ciently large vector invariants is not Cohen-Macaulay. The latter statementcon�rms a conjecture made by the author in a talk given in April 1996. Afurther application of Theorem 2.3 is the classi�cation of all groups G and�elds K such that K[Vreg ]G is Cohen-Macaulay for the regular representationVreg . Moreover, we get the result that for certain representations of symmetricgroups, the invariant ring is not Cohen-Macaulay. These representations includethe irreducible reection representation of degree n� 2 of the symmetric groupG = Sn on n letters, where p � 5 divides n, and n > 5. It is also possibleto use Theorem 2.3 to derive results on cohomology from the knowledge ofinvariant rings. For example, the fact that the symmetric and alternating groupsSn and An have no non-split central extension with kernel of order p � 5becomes a consequence of the well-known fact that the invariant rings of Snand An (with the usual permutation representation) are Cohen-Macaulay (seeExample 2.10(a)).In the third section we restrict our attention to the �rst cohomology groupwith values in K. This permits a more accurate analysis of the geometry ofannihilators, which leads to the second main result (Theorem 3.6). The resultthat a p-group G is generated by bireections if its invariant ring is Cohen-Macaulay arises as a corollary. This is remarkable since it yields a special caseof a theorem by Kac and Watanabe [12], but under a much weaker hypothesis(see Remark 3.8). Re�ning the methods a little bit more, we recover one of theresults in Nakajima [16], which consists of a further series of reection groupswhose invariant rings are not Cohen-Macaulay.Apart from producing classes of groups whose invariant rings are not Cohen-Macaulay, the methods developed in this article provide a means to analyze theCohen-Macaulay property of invariant rings. In fact, every example of a non-Cohen-Macaulay invariant ring known to the author can be understood in termsof these methods.



The Cohen-Macaulay Property 3Smith [18] took an approach to the question of depth and Cohen-Macaulayness of modular invariant rings which uses cohomology of G with val-ues in a certain Koszul complex. Although his paper makes heavy use of spectralsequences and this article does not, the methods used in the �rst section of thispaper are quite similar to Smith's methods. However, the main results of bothpapers are almost disjoint.The main parts of this paper were written during a visit of the author toQueen's University in Kingston, Ontario. I would like to express my thanks toIan Hughes, Eddy Campbell, Jim Shank, and David Wehlau for many conversa-tions which inspired this work, and for the stimulating atmosphere which theycreated. In particular, I am indebted to Jim Shank and Ian Hughes for sharingthe ideas which lead to Proposition 3.4 and Example 3.10. I also thank DavidBenson, Kay Magaard, J�urgen M�uller, Larry Smith, and Jacques Th�evenaz forvery fruitful conversations. Further thanks go to the referee for pointing outsome typos and suggesting some better formulations.1 Regular sequences and cohomologyIn this section, let R be a Noetherian commutative ring with 1 and let G �Aut(R) be a group of automorphisms of R. We write RG for the invariantring. A sequence a1; : : : ; am 2 R is called R-regular if (a1; : : : ; am) 6= R andai is not a zero divisor on R=(a1; : : : ; ai�1), for i = 1; : : : ;m. We have thecorresponding de�nition of RG-regularity, where the ideals have to be taken inRG. The depth of R is the maximal length of an R-regular sequence, denotedby depth(R).The following proposition gives a cohomological criterion to decide whether asequence a1; : : : ; am 2 RG which is R-regular is also RG-regular. Before statingit, we recall the Koszul complex0 �! R @m�1�! Rm @m�2�! R( mm�2) @m�3�! � � � @3�! R(m3 ) @2�! R(m2 ) @1�! Rm @0�! R(1)associated to a1; : : : ; am. If e1; : : : ; em is a basis for Rm, then @0 sends ei to ai,and if ei;j for 1 � i < j � m is a basis for R(m2 ), then @1(ei;j) = ajei � aiej .Furthermore, @m�1(1) = �1a1e1 + � � �+ �mamem with �i 2 f1;�1g.Proposition 1.1. Let a1; : : : ; am 2 RG be an R-regular sequence. For k =2; : : : ;m, let Mk � R(k2) be the kernel of the map @1 of the Koszul complexassociated to a1; : : : ; ak. Then a1; : : : ; am is an RG-regular sequence if andonly if the maps H1(G;Mk) �! H1(G;R(k2)) (2)induced by the embeddings Mk � R(k2) are injective for k = 2; : : : ;m.



The Cohen-Macaulay Property 4Proof. Since a1; : : : ; am is R-regular, the sequence (1) is exact (see, for example,Eisenbud [9, Corollary 17.5]). Applying this to RG, we see that in particularthe part (RG)(k2) �! (RG)k �! RG (3)from the Koszul complex over RG associated to a1; : : : ; ak is exact if a1; : : : ; akis RG-regular. Conversely, it is easily seen from the de�nitions of the maps@0 and @1 that the exactness of (3) implies that ak is not a zero divisor onRG=(a1; : : : ; ak�1). Hence a1; : : : ; am is RG-regular if and only if (3) is exactfor k = 2; : : : ;m.Write Nk for the image of the map R(k2) �! Rk. Since Nk is also the kernelof Rk �! R, we obtain an exact sequence 0 �! NGk �! (RG)k �! RG and acommutative diagram NGk��� @@R(RG)(k2) - (RG)k - RG:Hence (3) is exact if and only if the map (RG)(k2) �! NGk is surjective. Nowthe exact sequence 0 �!Mk �! R(k2) �! Nk �! 0 gives rise to the long exactsequence0 �!MGk �! (RG)(k2) �! NGk �! H1(G;Mk) �! H1(G;R(k2));hence the surjectivity of (RG)(k2) �! NGk is equivalent to the injectivity ofH1(G;Mk) �! H1(G;R(k2)). This completes the proof.At this point we embark on a short digression. Suppose that G is �nite andH � G is a subgroup whose index is invertible inR. It was proved in Kemper [13]that then depth(RH) � depth(RG). In particular, if RH is Cohen-Macaulay,then so is RG, which was already proved in Campbell et al. [6]. Unfortunately,the converse of this fails in general, and it is an interesting question under whichconditions the converse does hold. For example, it was proved by Campbellet al. [6] that if K is a �eld of characteristic p, R = S(V �) for a KG-module Vand H is a normal Sylow p-subgroup of G such that G is generated by H andreections, then RG is Cohen-Macaulay if and only if RH is Cohen-Macaulay.We will give a further condition where this is true. A subgroup H � G iscalled strongly R-embedded (see, for example, Th�evenaz [20, p. 440]) if thefollowing two properties hold:(a) The index (G : H) is invertible in R, and(b) for � 2 G nH the intersection �H \H has an order which is invertible inR, where �H = �H��1.



The Cohen-Macaulay Property 5If the characteristic of R is a prime number p, we also say that H is stronglyp-embedded. As a typical example, the normalizer of a Sylow p-subgroup Pof G is strongly p-embedded if for all � 2 G the intersection �P \ P is eitherP or the trivial group. Suppose that H � G is strongly R-embedded. Thenfor i > 0 and M a module over the group ring RGG, the restriction mapH i(G;M) �! H i(H;M) is an isomorphism. This is a well-known result, butfor lack of a reference I present a proof here which I learned from JacquesTh�evenaz. Indeed, consider the transfer map TrH;G: H i(H;M) �! H i(G;M).We have TrH;G � resG;H = (G : H) � id;hence resG;H is injective by the property (a) above. Now use the Mackey formula(see, for example, Benson [2, Lemma 3.6.16]) to getresG;H TrH;G(g) = X�2HnG=H Tr�H\H;H resH;�H\H(�g) = gfor g 2 H i(H;M), since H i(�H \ H;M) = 0 for � =2 H by the property (b).Hence resG;H is also surjective.The following corollary now becomes an easy consequence of Proposition 1.1.Corollary 1.2. Suppose H � G is a strongly R-embedded subgroup. Thendepth(RG) = depth(RH):Proof. The inequality depth(RG) � depth(RH) is proved in Kemper [13]. Forthe reverse inequality, let a1; : : : ; am 2 RG be a maximal RG-regular sequence.Using the notation of Proposition 1.1, we conclude from this proposition thatH1(G;Mk) �! H1(G;R(k2)) is injective for k = 2; : : : ;m. But by the assump-tion we have a commutative diagramH1(G;Mk) - H1(G;R(k2))?o ?oH1(H;Mk) - H1(H;R(k2));which by Proposition 1.1 shows that a1; : : : ; am is RH-regular as well, hencedepth(RH) � depth(RG).Example 1.3. Let p be a prime number and G = Sp the symmetric group on psymbols. Pick a Sylow p-subgroup P �= Zp, then the normalizer H = NG(P ) �=ZpoZp�1 is a strongly p-embedded subgroup of G. Consider the action of G onthe polynomial ring R = Fp [x1; : : : ; xp] by permutations of the indeterminates,so RG is a polynomial algebra and in particular Cohen-Macaulay. Hence byCorollary 1.2 also RH is Cohen-Macaulay. This may be unexpected, since RPis not Cohen-Macaulay if p � 5 by Ellingsrud and Skjelbred [10] (or also by alsoby Theorem 3.6 of this paper).



The Cohen-Macaulay Property 6We resume the main stream of the paper again and use the Proposition 1.1to proveTheorem 1.4. Suppose that r � 0 is an integer and assume that H i(G;R) = 0for 1 � i < r. (This assumption is void if r � 1.) Then any sequence in RG oflength � r+1 which is R-regular is also RG-regular. Furthermore, an R-regularsequence a1; : : : ; ar+2 2 RG is RG-regular if and only if the mapHr(G;R) �! Hr(G;Rr+2) (4)induced by the multiplication with a1; : : : ; ar+2 is injective.Proof. Let a1; : : : ; am 2 RG be R-regular, with 1 � m � r + 2. We �rsttreat a few special cases. If m = 1, then the sequence is clearly also RG-regular. If m = 2, then the module Mm from Proposition 1.1 is 0, hence themap (2) is injective and the sequence is RG-regular. If also r = 0, then themap (4) is always injective, which establishes the claimed equivalence in thatcase. Furthermore, suppose m = 3 and r = 1. Then Mm is the image of Runder the (injective) map @2 = @m�1 from (1), hence the map (4) is up to signsequal to the map (2). This reduces the theorem in this case to Proposition 1.1.Now we assume that r > 1. Then by assumption H1(G;R) = 0, so theinjectivity conditions in Proposition 1.1 are satis�ed if and only if H1(G;Mk) =0 for k = 2; : : : ;m. Hence we have to show that H1(G;Mm) = 0 for 2 � m �r + 1 and that H1(G;Mr+2) = 0 if and only if the map (4) is injective. We�rst prove by induction on k that for 1 � k � minfr � 1;m � 1g, H1(G;Mm)is isomorphic to Hk(G; ker(@k)), where the @k are the maps from the Koszulcomplex (1). In fact, from (1) we get the short exact sequence0 �! ker(@k) �! R( mk+1) @k�! ker(@k�1) �! 0;which gives rise to the exact sequence0 = Hk�1(G;R( mk+1)) �! Hk�1(G; ker(@k�1)) �!Hk(G; ker(@k)) �! Hk(G;R( mk+1)) = 0;which proves the claim.Now ifm � r, then we have shown that H1(G;Mm) �= Hm�1(G; ker(@m�1)),but ker(@m�1) = 0. Hence H1(G;Mm) = 0 in this case. If m = r + 1, thenH1(G;Mm) �= Hr�1(G; ker(@m�2)) �= Hr�1(G;R) = 0. Finally, if m = r + 2,then H1(G;Mm) �= Hr�1(G; ker(@m�3)), and the short exact sequence0 �! R @m�1�! Rm @m�2�! ker(@m�3) �! 0gives rise to the exact sequence0 = Hr�1(G;Rm) �! Hr�1(G; ker(@m�3)) �! Hr(G;R) '�! Hr(G;Rm);where ' is up to signs induced by multiplication with a1; : : : ; am. Hence form = r +2, H1(G;Mm) �= Hr�1(G; ker(@m�3)) is 0 if and only if the map (4) isinjective, which was to be shown.



The Cohen-Macaulay Property 7We now change our point of view by �xing an element from Hr(G;R) andconsidering its annihilator, which is an ideal in RG. We need some more ter-minology and a few facts from commutative algebra. For an ideal I C R themaximal length of an R-regular sequence whose elements lie in I is denotedby depthI (R), and ht(I) denotes the height of the ideal, which is the minimalheight of a prime ideal containing I . Furthermore, a sequence a1; : : : ; am 2 Ris said to be a partial system of parameters if (a1; : : : ; am) 6= R andht(a1; : : : ; ak) = k for k = 1; : : : ;m.Lemma 1.5. Let a1; : : : ; am 2 R such that (a1; : : : ; am) 6= R. Then the fol-lowing statements hold:(a) The sequence a1; : : : ; am is a partial system of parameters if and only ifai lies in none of the associated prime ideals p C R of (a1; : : : ; ai�1) forwhich ht(p) = i� 1, for i = 1; : : : ;m.(b) The sequence a1; : : : ; am is R-regular if and only if ai lies in none of theassociated prime ideals of (a1; : : : ; ai�1), for i = 1; : : : ;m. In particular,if a1; : : : ; am is R-regular, then it is a partial system of parameters.(c) If R is Cohen-Macaulay and a1; : : : ; am is a partial system of parameters,then it is R-regular.(d) If I C R is an ideal of height m, then there exist a1; : : : ; am 2 I which area partial system of parameters.(e) If R � S is an integral extension of rings and I C R, then ht(SI) = ht(I),where SI denotes the ideal in S generated by I. In particular, if a1; : : : ; amis a partial system of parameters in R, it is also one in S.Proof. Clearly if ai 2 p for an associated prime ideal p of (a1; : : : ; ai�1) ofheight i � 1, then ht(a1; : : : ; ai) � i � 1. Conversely, if ht(a1; : : : ; ai) =ht(a1; : : : ; ai�1) = i � 1 for some i, then there exists a prime ideal of heighti � 1 containing (a1; : : : ; ai). This prime must then be a minimal prime con-taining (a1; : : : ; ai�1) and is hence an associated prime of (a1; : : : ; ai�1) (seeEisenbud [9, Theorem 3.1]). This proves (a). The same theorem in [loc. cit.]says that the set of zero divisors of R=(a1; : : : ; ai�1) is the union of the asso-ciated primes of (a1; : : : ; ai�1), from which (b) follows immediately. Now (c)follows from the unmixedness theorem (see [loc. cit., Corollary 18.14]). Toprove (d), we assume that a1; : : : ; ai�1 2 I with ht(a1; : : : ; ai�1) have alreadybeen found. Then there exists ai 2 I which lies in none of the associated primesof (a1; : : : ; ai�1) of height i� 1, since otherwise I would be contained in one ofthese prime ideals by the prime avoidance lemma (see [loc. cit., Lemma 3.3]),and hence ht(I) � i� 1. By (a), this leads to a partial system of parameters.To prove (e), let p C R be a prime of minimal height m containing I , and letp0 $ : : : $ pm = p be an ascending chain of primes. By the going-up theorem(see [loc. cit, Proposition 4.15]), there exists a chain q0 � : : : � qm of primesqi C S with qi \ R = pi, and by [loc. cit., Corollary 4.18], this chain cannot



The Cohen-Macaulay Property 8be re�ned. Since qm contains SI , ht(SI) � m. For the reverse inequality, letq0 $ : : : $ qr be an ascending chain of primes in S with SI � qr, r = ht(SI),and set pi = qi \ R. Then by [loc. cit., Corollary 4.18], p0 $ : : : $ pr, andI � SI \R � pr. This shows ht(I) � r.With these facts, we can now deduce the following corollary from Theo-rem 1.4. Larry Smith pointed out to me that this corollary also follows fromthe spectral sequence he studied in [18].Corollary 1.6. Assume that R is Cohen-Macaulay and G is �nite, and thatH i(G;R) = 0 for 1 � i < r, where r > 0 is an integer. Let g 2 Hr(G;R) benonzero. Then forI = AnnRG(g) := fa 2 RG j a � g = 0g C RGwe have depthI(RG) = minfr + 1; ht(I)g:In particular, RG is not Cohen-Macaulay if ht(I) > r + 1.Proof. Assume that there exist a1; : : : ; ar+2 2 I which form an RG-regularsequence. By Lemma 1.5(b), the ai are a partial system of parameters in RG.So by (e) and the �niteness of G, they are also a partial system of parametersin R, hence the ai form an R-regular sequence by (c). But since the ai lie inI , g lies in the kernel of the map (4) from Theorem 1.4. Since g 6= 0, it followsby Theorem 1.4 that a1; : : : ; ar+2 is in fact not RG-regular. This proves thatdepthI(RG) � r + 1. Also clearly depthI(RG) � ht(I).By Lemma 1.5(d), there exists a partial system of parameters a1; : : : ; am oflength m := ht(I) with ai 2 I . Let m0 = minfr + 1;mg. Then a1; : : : ; am0 isR-regular, and by Theorem 1.4, it is also RG-regular. Hence depthI(RG) � m0.If m > r+1, then a1; : : : ; ar+2 is a partial system of parameters which is not anRG-regular sequence, hence RG is not Cohen-Macaulay by Lemma 1.5(c).In the above corollary the cohomology group Hr(G;R) is regarded as amodule over RG, and a non-vacuous statement can be made if I 6= 0, i.e., ifthe element g 2 Hr(G;R) under consideration is a torsion element. If R is anintegral domain with �eld of fractions Quot(R), then the kernel of the mapHr(G;R) �! Hr(G;Quot(R))consists exactly of the torsion elements. But it is well known thatHr(G;Quot(R)) = 0. In fact, by the normal basis theorem Quot(R) is iso-morphic to the regular module over Quot(RG). Hence Hr(G;R) is a torsionmodule. We will make use of this in the next section. However, we will needmore precise information on the annihilators than is provided by the aboveargument.Lemma 1.7. Suppose that U is a �nitely generated KG-module and let g 2Hr(G;U) with r > 0. Let W = KG be the regular module and a = P�2G � 2WG. Then a
 g = 0 as an element of Hr(G;W 
 U).



The Cohen-Macaulay Property 9Proof. We �rst observe that Hr(G;W ) = 0. This can be seen by the Eckmann-Shapiro lemma (see Benson [2, Corollary 2.8.4]), for example. It follows thatHr(G;P ) = 0 for any projective module P . ButW
U is the tensor product of aprojective module and another module, hence it is projective (see, for example,Benson [2, Proposition 3.1.5]). So Hr(G;W 
 U) = 0.2 Linear actionsIn this section, we specialize the assumptions by looking at the standard sit-uation of invariant theory of �nite groups: K is a �eld, V is a �nite dimen-sional vector space over K, and R = S(V �) is the symmetric algebra of thedual of V , which is isomorphic to a multivariate polynomial ring. Furthermore,G � GL(V ) is a �nite linear group on V , which has a natural action on R.As in Section 1, we write RG for the invariant ring. Furthermore, let p be thecharacteristic of K, which may be 0.In order to use Lemma 1.7 for �nding elements a 2 RG which annihilate agiven g 2 Hr(G;R), we have to recover (copies of) the regular module in R.This is done in the next lemma, where we assume that K is algebraically closed,which allows us to view the elements of R as functions on V . We write V � � Vfor the �xed space of a � 2 G, and StabG(v) for the stabilizer of a v 2 V .Lemma 2.1. Assume that K is algebraically closed, let m 2 f1; : : : ; dim(V )g bean integer and suppose that every element � 2 G of order p has rank(��1) � m.(This assumption is void if p = char(K) = 0.) Then there exist m embeddings'i: KG ,! R (i = 1; : : : ;m)of the regular KG-module into R such that the polynomialsai = 'i X�2G�! (i = 1; : : : ;m)form a partial system of parameters in RG. Moreover, the ai lie in the uniquehomogeneous maximal ideal RG+ of RG.Proof. Suppose by induction that '1; : : : ; 'k�1 have already been constructedfor a k 2 f1; : : : ;mg. By assumption, the setX = fv 2 V j StabG(v) has an order divisible by pg = [�2G;ord(�)=p V �has dimension� n�m, where n = dimK(V ). But every associated prime p C Rof (a1; : : : ; ak�1) has height k�1 and Krull dimension n�k+1, which is greaterthan n � m. Hence there exists a point wp 2 VV (p) n X � V for every suchp, where VV (p) denotes the variety in V given by p, and the wp can be chosen



The Cohen-Macaulay Property 10such that wp 6= �(wp0) for p 6= p0 and � 2 G. Furthermore, we can choose apoint v0 2 V such that the setf�(v0) j � 2 Gg [ fwp j p 2 Ass(a1; : : : ; ak�1)g [ f0ghas exactly jGj + jAss(a1; : : : ; ak�1)j + 1 (distinct) elements. In fact, v0 hasto avoid the points 0 and �(wp) for � 2 G, and the �nite union [�2GnfidgV �of proper subspaces. Now there exists a polynomial g 2 R with the followingproperties (where � is the Kronecker-delta):(i) g(�(v0)) = ��;id,(ii) g(�(wp)) = ��(wp);wp ,(iii) g(0) = 0.We de�ne 'k: KG ! R by setting 'k(�) = �(g). This is clearly a G-map. Toprove that it is injective, suppose thatX�2G�� � �(g) = 0with �� 2 K. For � 2 G, evaluation at �(v0) yields0 = X�2G�� � �(g)(�(v0)) = X�2G�� � g(��1�v0) = �� :Hence the �(g) are linearly independent, and 'k is injective.The polynomial ak de�ned in the statement of the lemma is clearly an in-variant, and 1 =2 (a1; : : : ; ak) by the property (iii). Evaluating ak at wp yieldsak(wp) = X�2G�(g)(wp) = X�2G g(��1(wp)) = j StabG(wp)j 6= 0;since wp =2 X . Because wp 2 VV (p), this means that ak lies in none of theassociated prime ideals of (a1; : : : ; ak�1), which by Lemma 1.5(a) shows thata1; : : : ; ak is a partial system of parameters. The ai lie in RG+ since ai(0) = 0by the property (iii) above. This completes the proof.Remark 2.2. If jGj is a multiple of p, then by Benson [3, Theorem 4.1.3]Hr(G;K) 6= 0 for some r > 0. In fact, we see from the proof in [3] that if � 2 Gis an element of order p and if the index of h�i in its normalizer is pah withp - h, then r can be chosen as 2(p�1)pa. Since K occurs as the direct summandS0(V �) in R, it follows that Hr(G;R) 6= 0.Putting the various strands together, we obtainTheorem 2.3. Suppose that Hr(G;R) 6= 0 for an integer r > 0 and that everyelement � 2 G of order p has rank(� � 1) � r + 2. Then RG is not Cohen-Macaulay.



The Cohen-Macaulay Property 11Proof. We may assume that r > 0 is minimal with Hr(G;R) 6= 0. Furthermore,since Hr(G;R) 6= 0, p must divide the order of G, hence there exist elements� 2 G of order p. By the assumption it follows that n := dim(V ) � r +2. Assume that RG is Cohen-Macaulay. Then RG is a free module over thealgebra K[a1; : : : ; an] generated by a homogeneous system of parameters. If�K is the algebraic closure of K, then it follows that �K 
K RG is free over�K[a1; : : : ; an], hence �K
K RG is also Cohen-Macaulay. So we can assume thatK is algebraically closed. Then by Lemma 2.1 there are m := r+2 embeddings'1; : : : ; 'm of the regular moduleKG into R, and the images contain invariantsai 2 RG which form a partial system of parameters of length m. Now takea nonzero g 2 Hr(G;R). Then by Lemma 1.7, ai 
 g = 0 as elements inHr(G;R 
 R). Applying the map Hr(G;R 
 R) �! Hr(G;R) induced byR 
 R �! R; f 
 g 7! fg yields that aig = 0 in Hr(G;R), hence the ai liein the annihilator I of g. It follows that ht(I) � m > r + 1, so RG is notCohen-Macaulay by Corollary 1.6.We obtain the following result on vector invariants.Corollary 2.4. Suppose that jGj is a multiple of p. Then there exists an m 2 Nsuch that S((V k)�)G is not Cohen-Macaulay for k � m. Here V k denotes thedirect sum of k copies of V , and S((V k)�) is the symmetric algebra of its dual.In particular, there exists a KG-module W such that S(W �)G is not Cohen-Macaulay.Proof. By Remark 2.2, there exists an r > 0, such that Hr(G;K) 6= 0. ThenHr(G;S((V k)�)) 6= 0 for all k 2 N. Now if k � r + 2, then and every � 2 Gwith � 6= id acts on V k with rankV k (� � 1) � r + 2. So the assertion followsfrom Theorem 2.3.Remark 2.5. As we see by the above proof, one can take m = 3 if G containsa normal subgroup of index p, since this implies the existence of a nonzeroadditive character G ! K, or, equivalently, a nonzero element in H1(G;K).This generalizes one of the results in Campbell et al. [8].We now study regular representations of �nite groups. If G is a �nite groupand K a �eld we shall write Vreg for the regular KG-module. The aim is toclassify all pairs (G;K) such that K[Vreg]G is Cohen-Macaulay. I am thankfulto Ian Hughes for raising this question.Lemma 2.6. If with the above notation jGj is divisible by char(K), thenH1(G;K[Vreg ]) 6= 0.Proof. K[Vreg ] is a polynomial ring with indeterminates x� indexed by elementsof G. Choose a subgroup H � G of order p := char(K) and form the monomialt = Q�2H x� , whose stabilizer is H . The module M � K[Vreg] spanned bythe G-orbit of t is the induced module from the trivial KH-module, hence bythe Eckmann-Shapiro lemma H1(G;M) �= H1(H;K) 6= 0. But M is a directsummand of K[Vreg ], so H1(G;M) is a direct summand of H1(G;K[Vreg ]).



The Cohen-Macaulay Property 12Theorem 2.7. Let G be a �nite group and K a �eld. Then K[Vreg]G is Cohen-Macaulay if and only if jGj is not a multiple of the characteristic of K orG 2 fZ2; Z3; Z2 � Z2g.Proof. Suppose that K[Vreg]G is Cohen-Macaulay and p := char(K) divides jGj.We have to show that then G 2 fZ2; Z3; Z2 �Z2g. Indeed, H1(G;K[Vreg ]) 6= 0by Lemma 2.6 and an element � 2 G of order p acts on Vreg with rank(��1) =jGj � (p � 1)=p. Hence by Theorem 2.3 we must have jGj � (p � 1)=p < 3, sojGj � 4. So we must only show that G cannot be Z4. Indeed, K[Vreg]Z4 is notCohen-Macaulay if char(K) = 2 by Bertin [5], or by Theorem 3.6 of this paper.Conversely, if p - jGj then K[Vreg ]G is Cohen-Macaulay by Hochster andEagon [11]. For G 2 fZ2; Z3g the Cohen-Macaulayness follows from Ellingsrudand Skjelbred [10] since G is a p-group and the dimension of the representationis � 3. We are left with the case G = Z2 � Z2, and here the invariant ring canbe looked up in Adem and Milgram [1, Chapter 3, Corollary 1.8] or calculatedwith a computer (see Kemper and Steel [15]). The result is a Cohen-Macaulayring.We note a few more applications of Theorem 2.3.Corollary 2.8. Suppose that p = char(K) � 5 and that G acts as a transitivepermutation group on a basis e1; : : : ; en of a vector space W over K, where nis a multiple of p.(a) Let V be the quotient module W=K � (e1 + � � �+ en). Then RG = S(V �)Gis not Cohen-Macaulay.(b) Suppose that G contains a transitive cyclic subgroup, n > 5, and V0 is thekernel of the trace map�: V ! K; nXi=1 �iei +K � (e1 + � � �+ en) 7! nXi=1 �i:Then S(V �0 )G is not Cohen-Macaulay.Proof. Consider the exact sequence0 �! K �!W �! V �! 0:By the transitivity of G, a G-map from W into K must assign the same valueto all ei. Composing this with the map K ! W yields the zero-map K ! K.Hence the sequence is non-split. Dualizing gives a non-split extension of K byV �, which shows that H1(G; V �) 6= 0, hence H1(G;R) 6= 0. Now consider theexact sequence 0 �! K �!W0 �! V0 �! 0;where W0 is the kernel of the trace map, and assume there exists a �0 2 G with�0(ei) = ei+1, where the indices are taken modulo n. Then a G-map W0 ! Kmust take the same value � on all ei � ei+1, hence the vector e1 + � � � + en =



The Cohen-Macaulay Property 13Pni=1 i�(ei�ei+1) is mapped to �n+12 �� = 0. As above, the sequence is non-split,and we obtain H1(G; V �0 ) 6= 0.The proof is complete if we can show that rankV (� � 1) and rankV0(� � 1)are at least 3 for every element � 2 G of order p. We can assume that thedisjoint cycle representation of � contains the cycle (1; 2; : : : ; p), and will showthat (� � 1)(e1); (� � 1)(e2); (� � 1)(e3) are linearly independent in V . Indeed,a linear relation has the form�1(e2 � e1) + �2(e3 � e2) + �3(e4 � e3) = �(e1 + � � �+ en)with �; �1; �2; �3 2 K. It follows that � = �3 = �2 = �1 = 0. Next we showthat (� � 1)(e2 � e1); (� � 1)(e3 � e2); (� � 1)(e4 � e3) are linearly independentin V0 if n > 5. Here we obtain�1(e3 � 2e2 + e1) + �2(e4 � 2e3 + e2) + �3(e5 � 2e4 + e3) = �(e1 + � � �+ en);so again all �i are zero.Example 2.9. If n is a multiple of p and p � 5, then the symmetric group Sn isan example of the type dealt with in Corollary 2.8. With the notation from thecorollary, we get the result that S(V �)Sn is not Cohen-Macaulay, and neither isS(V �0 )Sn if n > 5. Sn acts on both V and V0 as a reection group. Thus we havefound an in�nite series of �nite reection groups whose invariant rings are noteven Cohen-Macaulay. Another such series, which consists of abelian p-groups,was given by Nakajima [16] (see Example 3.10 below). In our example, theaction of Sn on V0 is irreducible for n > 5. It is quite surprising that by Kemperand Malle [14] the �eld of fractions K(V0)Sn of S(V �0 )Sn is a rational function�eld over K. What may be even more surprising is that although S(V �)Sn isnot Cohen-Macaulay, the invariant ring S(V )Sn of the dual representation is apolynomial ring. In fact it is easily seen that S(V )Sn is generated by the imagesof the elementary symmetric polynomials s2(e1; : : : ; en); : : : ; sn(e1; : : : ; en) 2S(W ) in S(V ).It is sometimes possible to read Theorem 2.3 \backwards" to obtain lowerbounds on r > 0 such that Hr(G;R) 6= 0. This leads to an example whereeasy facts from invariant theory can be used to obtain non-trivial statements ofgroup theory.Example 2.10. Suppose that G = Sn or G = An is the symmetric or alternatinggroup on n letters. We look at several permutation representations of G.(a) First, let V be the natural permutation module, and p = char(K) � 3.(We do not assume that p divides n.) The invariant ring RG is Cohen-Macaulay. In fact, it is isomorphic to a polynomial ring if G = Sn, anda hypersurface of G = An. For an element � 2 G of order p we haverank(��1) � p�1. It now follows by Theorem 2.3 that Hr(G;R) = 0 for0 < r � p� 3. In particular, Hr(G;K) = 0 for such r. Thus the fact thatSn and An have no non-split central extension with kernel of order p � 5can easily be derived from Theorem 2.3.



The Cohen-Macaulay Property 14(b) Now suppose that V is a direct sum ofm copies of the natural permutationmodule of G (m 2 N). In order to calculate the cohomology of R, we lookat a decomposition of R into a direct sum of KG-modules, which willyield a decomposition of Hr(G;R). Such a decomposition is given bytaking the submodules of R spanned by G-orbits of monomials in thevariables xi;j (1 � i � m; 1 � j � n), which are a basis of V � on whichG acts by �(xi;j) = xi;�(j). Each of these modules is induced from thetrivial module over KH , where H is the stabilizer of a monomial. Soby the Eckmann-Shapiro lemma, the cohomology of G with values in thespan of a monomial-orbit is equal to the cohomology of the stabilizer Hof the monomial with values in K. But we see that such a stabilizer iseither a direct product of symmetric groups (possibly on fewer letters)or the subgroup of even permutations contained in this product, so ithas no normal subgroup of index p except for the case G = A3, henceH1(H;K) = 0 in all other cases. It follows that H1(G;R) = 0 if G 6= A3.In fact, one can combine the arguments from parts (a) and (b) of thisexample to show that Hr(G;R) = 0 for 0 < r � p� 3.(c) Let V be as in (b) and assume that G = Sp or Ap. Take an element � 2 Gof order p, then h�i has an index divisible by p � 1 in its normalizer. Itfollows by Remark 2.2 that the �rst r > 0 with Hr(G;R) 6= 0 is boundedfrom above by 2(p � 1). On the other hand, rank(� � 1) = m(p � 1), soby Theorem 2.3, RG is not Cohen-Macaulay if m � 3. In view of (b),this yields an example where the higher cohomology modules are indeedneeded.3 A closer look at the geometryIn this section we restrict our point of view drastically by only consideringH1(G;R) and most of the time only cocycles with values in K. Using H1(G;R)means that we are looking for partial systems of parameters of length 3 which arenot RG-regular sequences. It is surprising how much can be said in spite of thisnarrowing of possibilities. The bene�t of the restriction lies in a more accurategeometric description of the ideal I = AnnRG(g) occurring in Corollary 1.6.We adopt the same notation as in the previous section, so V is a �nitedimensional vector space over a �eld K of characteristic p, and G � GL(V )is a �nite linear group on V with the natural action on the symmetric algebraR = S(V �) of the dual. Furthermore, if X � V is a set of points, we writeIR(X) and IRG(X) for the ideals of all polynomials or invariants, respectively,which vanish on all points of X . If I � R is a set of polynomials, we writeVV (I) for the set of points in V where all f 2 I vanish. It is convenient to usethe bar resolution, so we view cocycles from Z1(G;M) as maps G !M whichwe denote by (g�)�2G.



The Cohen-Macaulay Property 15Proposition 3.1. Let g 2 H1(G;R) be nonzero, (g�)�2G 2 Z1(G;R) a cocyclerepresenting g, and let X = [�2G (V � n VV (g�)) � V:Then AnnRG(g) � IRG (X).Proof. Take f 2 I := AnnRG(g). Then there exists an h 2 R such that f � g� =(� � 1)h for all � 2 G. Hence if a point v 2 V lies in V � n VV (g�) for some �,we obtain f(v) � g�(v) = h(��1(v))�h(v) = 0, hence f(v) = 0. This shows thatf 2 IRG(X).We are going to prove the reverse inclusion for the special case that the cocy-cle (g�) takes values in K. Before doing so, we present the following cautionaryexample.Example 3.2. Suppose that G = h�i is a cyclic group and we are interested incomputing the ideal I C RG consisting of all (� � 1)h 2 RG with h 2 R. Ifv 2 V � , then ((� � 1)h)(v) = h(��1(v))� h(v) = 0. If on the other hand v liesin V n V � , then there exists an h 2 R which takes di�erent values on v and on��1(v), hence ((� � 1)h)(v) 6= 0. So one might be tempted to conclude thatthe radical ideal of I is exactly IRG(V �). But if K is of characteristic 0, then Imust be the zero ideal, since (� � 1)h = g 2 RG implies �i(h) = h+ i � g, henceg = 0 or G would be in�nite. So the conclusion pI = IRG(V �) is in generalquite wrong.It is surprising that in the situation of Proposition 3.5 we will obtain exactlythe result that turned out to be false in the above example. In order to moveon safe ground, we proveLemma 3.3. Suppose that K is algebraically closed and let A be a subalgebraof R such that R is �nitely generated as a module over A. Then for an idealI E A we have pI = IA(VV (I)):Proof. If f 2 pI , then fk 2 I for some k 2 N, so for v 2 VV (I) we havefk(v) = 0, hence f 2 IA(VV (I)).Conversely, suppose that f 2 IA(VV (I)). Then f lies in all maximal idealsm C R in R containing I , since K is algebraically closed. Let p C A be a primeideal in A containing I . Then by the going-up theorem, there exists a primeideal q C R such that q\A = p. By Hilbert's Nullstellensatz (Eisenbud [9, The-orem 4.19]), q is equal to the intersection of all maximal ideals in R containingq. But f lies in each of these maximal ideals, hence f 2 q and then also f 2 p,since f is an invariant. We have shown that f lies in every prime ideal in Acontaining I , and by Eisenbud [9, Corollary 2.12], the intersection of all theseprime ideals is the radical of I .If g 2 H1(G;K), then the cocycle (g�) representing g is uniquely determinedand is in fact a homomorphism from G into the additive group of K. Hence wecan look at its kernel.



The Cohen-Macaulay Property 16Proposition 3.4. Assume that K is algebraically closed and let g 2 H1(G;K)be nonzero with kernel N C G. Let J C RG be the image of the relative transferTrGN : RN ! RG; f 7! rXi=1 �i(f);where �1; : : : ; �r is a system of coset representatives of N in G. ThenpJ = IRG(X) with X = [�2GnN V � :Proof. In view of Lemma 3.3, we must show that X = VV (J). So take a pointv 2 V � for some � 2 GnN . We have �p 2 N , since g�p = p �g� = 0. Let H � Gbe the subgroup generated by N and �, then for h 2 RN we haveTrHN (h)(v) = p�1Xi=0 h(��i(v)) = p�1Xi=0 h(v) = 0;hence TrGN (h)(v) = 0. This shows that v 2 VV (J).Now suppose that v 2 V nX . An easy calculation shows that this impliesthat the N -orbits of �i(v) for i = 1; : : : ; r are pairwise disjoint. Hence thereexists an h 2 RN such that h(��1i (v)) = �1;i. It follows that TrGN (h)(v) = 1,hence v =2 VV (J).I owe the idea of the preceding proof to a conversation with Jim Shank. Wenow put Proposition 3.1 and Proposition 3.4 together.Proposition 3.5. Assume that K is algebraically closed and let g 2 H1(G;K)be nonzero with kernel N C G. Moreover, let I = AnnRG(g) be its annihilator.Then pI = IRG (X) with X = [�2GnN V � :Proof. The inclusion pI � IRG (X) was already shown in Proposition 3.1. Sosuppose that f 2 IRG(X). Then by Proposition 3.4, fk = TrGN (h) with h 2 RNand k 2 N. Now G=N is embedded in K, so it must be an elementary abelianp-group. Take �1; : : : ; �m 2 G to be generators for this group, thenfk = p�1Xi1;::: ;im=0�i11 � � ��imm (h) = (�1 � 1)p�1 � � � (�m � 1)p�1(h);where we used the polynomial identity 1 +X + � � � +Xp�1 = (X � 1)p�1 overK. Write �j = �j � 1 and formeh = mXi=1 g�i � ��p�11 � � � �p�1i�1 �p�2i �p�1i+1 � � � �p�1m (h)� :



The Cohen-Macaulay Property 17Since �pi yields zero when applied to an invariant under N , it follows that �ieh =g�i � fk, and from that (� � 1)eh = g� � fk for any � 2 G. Hence fk lies inI = AnnRG(g) and so f 2 pI .An automorphism � 6= id of a vector space is called a bireection if rank(��1) � 2. In the case r = 1 of Theorem 2.3, the hypothesis is that G contains nobireection of order p. With the help of Proposition 3.5, we can now weakenthis hypothesis.Theorem 3.6. Assume that G has a normal subgroup N of index p, whichcontains all bireections in G. Then RG is not Cohen-Macaulay.Proof. As in the proof of Theorem 2.3, we can assume that K is algebraicallyclosed. There is an element g 2 H1(G;K) with kernel N . Since all bireectionsof G are contained in N , the codimension of all V � for � 2 G nN is at least 3.Hence for X = [�2GnNV � we have ht(IRG(X)) � 3. But by Proposition 3.5,IRG(X) is the radical of I = AnnRG(g), hence ht(I) � 3, and the theoremfollows from Corollary 1.6.If G is not generated by bireections, then the bireections in G generatea proper normal subgroup. If G is a p-group, then this can be extended to anormal subgroup of index p. So we obtainCorollary 3.7. If G is a p-group and RG is Cohen-Macaulay, then G is gen-erated by bireections.Remark 3.8. Kac and Watanabe proved in [12] that if the invariant ring ofa �nite linear group G is a complete intersection, then G is generated by bire-ections. Since the complete intersection property implies the Cohen-Macaulayproperty (see Stanley [19]), we have recovered their result for the special case ofp-groups. The remarkable thing is that in this case the much weaker hypothesisof Cohen-Macaulayness of the invariant ring su�ces.We can do better than Theorem 3.6 if we widen our point of view just veryslightly by multiplying a 1-cocycle with values in K, as considered in Theo-rem 3.6, by an invariant from RG. This leads to the following improvement.Theorem 3.9. Suppose that G has a normal subgroup N with factor group anelementary abelian p-group, and suppose that there is a �0 2 G nN , �0 not abireection, such that for all bireections � 2 G nN we haveV �0 6� V �:Then RG is not Cohen-Macaulay.Proof. As before, we can assume that K is algebraically closed. WriteX = [�2GnN V � and X 0 = [�2GnN;� bireection V �:



The Cohen-Macaulay Property 18Then the hypothesis says that X 0 $ X . SinceX andX 0 are closed and G-stable,there exists an invariant h 2 IRG (X 0) n IRG (X). Let I C R be the ideal of theinvariants which vanish on all �xed spaces V � for � 2 G nN not a bireection.Then ht(I) � 3, hence by Lemma 1.5(d) there exist a1; a2; a3 2 I which form apartial system of parameters. We have h � ai 2 IRG(X).There exists a g 2 H1(G;K) with kernel N . By Proposition 3.5, the h �ai liein the radical of the annihilator of g, hence hk �aki 2 AnnRG(g) for some k 2 N. Itfollows that aki 2 AnnRG(g0) with g0 = hk � g (i = 1; 2; 3). The proof is completeby Corollary 1.6 if we can show that g0 is nonzero. But that is equivalent tohk =2 AnnRG(g), which is true since h =2 IRG (X) =pAnnRG(g).Clearly Theorem 3.6 cannot be used to show the non-Cohen-Macaulaynessof RG in the case that G is generated by bireections. However, in the followingexample G is even generated by reections, and we are able to prove that RGis not Cohen-Macaulay by using Theorem 3.9.Example 3.10. In [16], Nakajima gave the following groups as an example ofreection groups whose invariant rings are not Cohen-Macaulay. Let K be a�nite �eld, m � 3, n = 2m + 1, and consider the group G consisting of then� n-matrices 0BBBBBBBBBB@
1 . . . 01 1�0 �m 1. . . ... . . .�m�1 �m 1

1CCCCCCCCCCAwith �0; : : : ; �m 2 K. Our goal is to recover Nakajima's result that RG is notCohen-Macaulay. Let N C G be the subgroup consisting of all matrices with�m = 0. For any bireection � 2 G nN , �m must be nonzero, and at most oneother �i can be nonzero, since m � 3. Hence the (m + 1)-st coordinate of avector in V � must be zero. Now let �0 be the matrix with �0 = : : : = �m = 1.Then �0 2 GnN is not a bireection, and V �0 contains a vector whose (m+1)-stcoordinate is nonzero. This means that V �0 6� V � for all bireections � 2 GnN .Hence the result follows by Theorem 3.9.The argument in the above example is based on a more elementary proofwhich was shown to me by Ian Hughes.References[1] Alejandro Adem, R. James Milgram, Cohomology of Finite Groups,Springer-Verlag, Berlin, Heidelberg, New York 1994.[2] David J. Benson, Representations and Cohomology I, Cambridge studies inadvanced mathematics 30, Cambridge Univ. Press, Cambridge 1991.
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