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Abstract

If V is a faithful module for a finite group G over a field of characteristic
p, then the ring of invariants need not be Cohen-Macaulay if p divides the
order of G. In this article the cohomology of G is used to study the
question of Cohen-Macaulayness of the invariant ring.

One of the results is a classification of all groups for which the invari-
ant ring with respect to the regular representation is Cohen-Macaulay.
Moreover, it is proved that if p divides the order of G, then the ring of
vector invariants of sufficiently many copies of V' is not Cohen-Macaulay.
A further result is that if G is a p-group and the invariant ring is Cohen-
Macaulay, then G is a bireflection group, i.e., it is generated by elements
which fix a subspace of V' of codimension at most 2.

Introduction

Let G < GL(V) be a finite group acting on a vector space V of dimension n
over a field K. Then G acts on the symmetric algebra R = S(V*) of the dual of
V, which is a polynomial ring over K, and we consider the invariant ring RC.
By the Noether normalization lemma, there exist homogeneous fi,... , f, € R®
such that RY is finitely generated as a module over A = K[f1,..., f,]. R® is
called Cohen-Macaulay if it is a free module over A. This is independent of
the choice of the set {fi,...,fn}. An equivalent condition is that fi,..., f,
form an R%-regular sequence (see the beginning of Section 1). R® is always
Cohen-Macaulay if the characteristic p of K does not divide the order of G. If,
however, |G| is a multiple of p (which we call the modular case), then R® is in
general not Cohen-Macaulay. At the moment, the knowledge about which linear

*The author thanks Ian Hughes, Eddy Campbell, Jim Shank, and David Wehlau for their
hospitality during his visit to Queen’s University in Kingston, Ontario, where most of this
paper was prepared.



The Cohen-Macaulay Property 2

groups in the modular case have invariant rings which are Cohen-Macaulay and
which ones do not is very sketchy, to say the least. The only classes of groups
where we have a complete answer are the cyclic groups, which were treated
by Ellingsrud and Skjelbred [10], and, more generally, the so-called shallow
groups (Campbell et al. [7]). For further references relevant to this question, we
refer the reader to the books by Smith [17] and Benson [4], which also provide
introductory texts on invariant theory of finite groups.

In the first section of this paper we relate the regularity of sequences
fise-- s fn € RC to the cohomology H*(G, R) of G' with values in the polyno-
mial ring R. These cohomology groups are viewed as modules over R®, and it is
shown that, loosely speaking, large annihilators of elements of the cohomology
destroy the Cohen-Macaulay property. As a first application, it is proved that
if H < G is a strongly p-embedded subgroup, then depth(R¥) = depth(R%).
This is a partial converse to a result of Campbell et al. [6].

In Section 2, geometric arguments are used to prove that the annihilator
mentioned above is large enough in many cases. This leads to the first main
result (Theorem 2.3) and the corollary that in the modular case the ring of
sufficiently large vector invariants is not Cohen-Macaulay. The latter statement
confirms a conjecture made by the author in a talk given in April 1996. A
further application of Theorem 2.3 is the classification of all groups G and
fields K such that K[V,e,]¢ is Cohen-Macaulay for the regular representation
Vreg. Moreover, we get the result that for certain representations of symmetric
groups, the invariant ring is not Cohen-Macaulay. These representations include
the irreducible reflection representation of degree n — 2 of the symmetric group
G = S, on n letters, where p > 5 divides n, and n > 5. It is also possible
to use Theorem 2.3 to derive results on cohomology from the knowledge of
invariant rings. For example, the fact that the symmetric and alternating groups
S, and A, have no non-split central extension with kernel of order p > 5
becomes a consequence of the well-known fact that the invariant rings of S,
and A, (with the usual permutation representation) are Cohen-Macaulay (see
Example 2.10(a)).

In the third section we restrict our attention to the first cohomology group
with values in K. This permits a more accurate analysis of the geometry of
annihilators, which leads to the second main result (Theorem 3.6). The result
that a p-group G is generated by bireflections if its invariant ring is Cohen-
Macaulay arises as a corollary. This is remarkable since it yields a special case
of a theorem by Kac and Watanabe [12], but under a much weaker hypothesis
(see Remark 3.8). Refining the methods a little bit more, we recover one of the
results in Nakajima [16], which consists of a further series of reflection groups
whose invariant rings are not Cohen-Macaulay.

Apart from producing classes of groups whose invariant rings are not Cohen-
Macaulay, the methods developed in this article provide a means to analyze the
Cohen-Macaulay property of invariant rings. In fact, every example of a non-
Cohen-Macaulay invariant ring known to the author can be understood in terms
of these methods.
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Smith [18] took an approach to the question of depth and Cohen-
Macaulayness of modular invariant rings which uses cohomology of G with val-
ues in a certain Koszul complex. Although his paper makes heavy use of spectral
sequences and this article does not, the methods used in the first section of this
paper are quite similar to Smith’s methods. However, the main results of both
papers are almost disjoint.

The main parts of this paper were written during a visit of the author to
Queen’s University in Kingston, Ontario. I would like to express my thanks to
Tan Hughes, Eddy Campbell, Jim Shank, and David Wehlau for many conversa-
tions which inspired this work, and for the stimulating atmosphere which they
created. In particular, I am indebted to Jim Shank and Ian Hughes for sharing
the ideas which lead to Proposition 3.4 and Example 3.10. I also thank David
Benson, Kay Magaard, Jiirgen Miiller, Larry Smith, and Jacques Thévenaz for
very fruitful conversations. Further thanks go to the referee for pointing out
some typos and suggesting some better formulations.

1 Regular sequences and cohomology

In this section, let R be a Noetherian commutative ring with 1 and let G <
Aut(R) be a group of automorphisms of R. We write R for the invariant
ring. A sequence ay,...,a,, € R is called R-regular if (a1,...,a,) # R and
a; is not a zero divisor on R/(ay,...,a;—1), for i = 1,... ,m. We have the
corresponding definition of R%-regularity, where the ideals have to be taken in
RC. The depth of R is the maximal length of an R-regular sequence, denoted
by depth(R).

The following proposition gives a cohomological criterion to decide whether a
sequence aj, ... ,a,, € R® which is R-regular is also R®-regular. Before stating
it, we recall the Koszul complex

0 —s R g O R(La) Ommp L 9ay, p(3) %2, (%) 2y gm O, g
(1)
associated to ay,... ,am. If e1,... ,en is a basis for R™, then dy sends e; to a;,

and if ; ; for 1 < i < j < m is a basis for R(nzl), then 0i(e; ;) = aje; — aje;.
Furthermore, 9,1 (1) = €1a1e1 + - - - + emamen with €; € {1,-1}.

Proposition 1.1. Let ai,... ,a, € R be an R-reqular sequence. For k =
k

2,...,m, let M C R() be the kernel of the map 01 of the Koszul complex

associated to ai,...,a,. Then ai,...,am is an RC-reqular sequence if and

only if the maps

k
2

(@, M) — H'(G, RG)) (2)

induced by the embeddings My, C R(Z) are injective for k =2,... ,m.
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Proof. Since ay, ... ,an, is R-regular, the sequence (1) is exact (see, for example,
Eisenbud [9, Corollary 17.5]). Applying this to R, we see that in particular
the part

(R%)() — (RY)* — RY (3)

from the Koszul complex over R associated to a1, ... ,a is exact if aq,... ,ax
is RG-regular. Conversely, it is easily seen from the definitions of the maps
0o and 0; that the exactness of (3) implies that aj is not a zero divisor on
R%/(a1,... ,ax—1). Hence ai,...,an is R%-regular if and only if (3) is exact
fork=2,...,m.

Write N}, for the image of the map R(g) — RF. Since Ny, is also the kernel
of R*¥ — R, we obtain an exact sequence 0 — N — (RY)* — R® and a
commutative diagram

Ng

/N

(R%)(2) (R9) RE.

Hence (3) is exact if and only if the map (RG)(I’;) — NF is surjective. Now

the exact sequence 0 — M; — R(Z) — N — 0 gives rise to the long exact
sequence
0 — MS — (R®)E) — N¢ — HY (G, M) — H'(G, R(),

hence the surjectivity of (RG)(I’;) — NFE is equivalent to the injectivity of

HY(G, M) — H(G, R(Z)) This completes the proof. O

At this point we embark on a short digression. Suppose that G is finite and
H < G is a subgroup whose index is invertible in R. It was proved in Kemper [13]
that then depth(R¥) < depth(R%). In particular, if R is Cohen-Macaulay,
then so is R®, which was already proved in Campbell et al. [6]. Unfortunately,
the converse of this fails in general, and it is an interesting question under which
conditions the converse does hold. For example, it was proved by Campbell
et al. [6] that if K is a field of characteristic p, R = S(V*) for a KG-module V
and H is a normal Sylow p-subgroup of G such that G is generated by H and
reflections, then RY is Cohen-Macaulay if and only if R¥ is Cohen-Macaulay.
We will give a further condition where this is true. A subgroup H < G is
called strongly R-embedded (see, for example, Thévenaz [20, p. 440]) if the
following two properties hold:

(a) The index (G : H) is invertible in R, and

(b) for o € G\ H the intersection °H N H has an order which is invertible in
R, where °H = ocHo™!.
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If the characteristic of R is a prime number p, we also say that H is strongly
p-embedded. As a typical example, the normalizer of a Sylow p-subgroup P
of GG is strongly p-embedded if for all 0 € G the intersection P N P is either
P or the trivial group. Suppose that H < G is strongly R-embedded. Then
for i > 0 and M a module over the group ring R6G, the restriction map
H(G,M) — H'(H,M) is an isomorphism. This is a well-known result, but
for lack of a reference I present a proof here which I learned from Jacques
Thévenaz. Indeed, consider the transfer map Trg g: H'(H,M) — HY(G, M).
We have
TrHGoresGﬂ = (G : H) . id,

hence resg, i is injective by the property (a) above. Now use the Mackey formula
(see, for example, Benson [2, Lemma 3.6.16]) to get

resqg. i Tru,q(g) = Z Trognm, o resy,sinm(0g) = g
oc€EH\G/H

for g € H'(H, M), since H'("H N H,M) = 0 for o ¢ H by the property (b).
Hence resg, i is also surjective.
The following corollary now becomes an easy consequence of Proposition 1.1.

Corollary 1.2. Suppose H < G is a strongly R-embedded subgroup. Then
depth(R%) = depth(RH).

Proof. The inequality depth(R®) > depth(R¥) is proved in Kemper [13]. For

the reverse inequality, let ay,... ,a, € R® be a maximal R%-regular sequence.

Using the notation of Proposition 1.1, we conclude from this proposition that
k

HY G, M) — Hl(G,R(2)) is injective for £ = 2,... ,m. But by the assump-

tion we have a commutative diagram

Hl(G,Mk) — Hl(G’R(Z))

! !
HY(H,M) — H'(H,R{)),

which by Proposition 1.1 shows that ai,...,a,, is R¥-regular as well, hence
depth(RH) > depth(R%). O

Ezample 1.3. Let p be a prime number and G = S, the symmetric group on p
symbols. Pick a Sylow p-subgroup P = Z,, then the normalizer H = Ng(P) &
Zp XN Zp_1 is a strongly p-embedded subgroup of G. Consider the action of G on
the polynomial ring R = Fp[z1,... ,z,] by permutations of the indeterminates,
so R is a polynomial algebra and in particular Cohen-Macaulay. Hence by
Corollary 1.2 also R is Cohen-Macaulay. This may be unexpected, since R”
is not Cohen-Macaulay if p > 5 by Ellingsrud and Skjelbred [10] (or also by also
by Theorem 3.6 of this paper).
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We resume the main stream of the paper again and use the Proposition 1.1
to prove

Theorem 1.4. Suppose that r > 0 is an integer and assume that H*(G,R) = 0
for 1 <i <r. (This assumption is void if r < 1.) Then any sequence in R® of
length < r+1 which is R-reqular is also R -reqular. Furthermore, an R-regular

sequence ay, ... ,ar1o € R® is RC -regular if and only if the map
H"(G,R) — H"(G,R"2) (4)
induced by the multiplication with a1,... ,ar42 1S injective.

Proof. Let a1,...,am € RS be R-regular, with 1 < m < r + 2. We first
treat a few special cases. If m = 1, then the sequence is clearly also RS-
regular. If m = 2, then the module M,, from Proposition 1.1 is 0, hence the
map (2) is injective and the sequence is R%-regular. If also r = 0, then the
map (4) is always injective, which establishes the claimed equivalence in that
case. Furthermore, suppose m = 3 and r = 1. Then M,, is the image of R
under the (injective) map 92 = 0,1 from (1), hence the map (4) is up to signs
equal to the map (2). This reduces the theorem in this case to Proposition 1.1.

Now we assume that » > 1. Then by assumption H!(G,R) = 0, so the
injectivity conditions in Proposition 1.1 are satisfied if and only if H!(G, M) =
0 for k = 2,...,m. Hence we have to show that H' (G, M,,) = 0 for 2 < m <
r + 1 and that H'(G, M,,5) = 0 if and only if the map (4) is injective. We
first prove by induction on k that for 1 < k < min{r — 1,m — 1}, H'(G, M,,)
is isomorphic to H*(G, ker(0;)), where the 9, are the maps from the Koszul
complex (1). In fact, from (1) we get the short exact sequence

0 — ker(0x) — RGT) By ker(0x—1) — 0,
which gives rise to the exact sequence
0= H*=2(G, RG:H)) — H*=1(G, ker(9_1)) —
H"(G, ker(8y)) — H*(G, RG:)) =0,

which proves the claim.

Now if m < r, then we have shown that H'(G, M,,) = H™ (G, ker(0p,—1)),
but ker(d,,—1) = 0. Hence H'(G, M,,) = 0 in this case. If m = r + 1, then
HY(G,M,,) = H" (G, ker(dy,—2)) = H""'(G,R) = 0. Finally, if m = r + 2,
then H'(G, M,,) = H"~1(G, ker(d,,—3)), and the short exact sequence

0— R2% R™ %% ker(9y,_3) — 0
gives rise to the exact sequence
0=H""YG,R™) — H"\(G,ker(d,,_3)) — H"(G,R) %5 H"(G,R™),

where ¢ is up to signs induced by multiplication with ay,...,a,,. Hence for
m=r+2, H (G, M,,) 2 H"~'(G,ker(d,,_3)) is 0 if and only if the map (4) is
injective, which was to be shown. O
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We now change our point of view by fixing an element from H" (G, R) and
considering its annihilator, which is an ideal in R®. We need some more ter-
minology and a few facts from commutative algebra. For an ideal I <1 R the
maximal length of an R-regular sequence whose elements lie in [ is denoted
by depth;(R), and ht(I) denotes the height of the ideal, which is the minimal
height of a prime ideal containing I. Furthermore, a sequence ay,... ,a,, € R
is said to be a partial system of parameters if (a1,...,a,,) # R and
ht(a1,...,ax) =kfor k=1,... ,m.

Lemma 1.5. Let a1,...,a, € R such that (a1,...,am) # R. Then the fol-
lowing statements hold:

(a) The sequence ai,... ,am is a partial system of parameters if and only if
a; lies in none of the associated prime ideals p < R of (a1,-.. ,a;—1) for
which ht(p) =i —1, fori=1,... ,m.

(b) The sequence ay,... ,a, is R-regular if and only if a; lies in none of the
associated prime ideals of (a1,...,a;-1), fori=1,... ,m. In particular,
if ai, ... ,am is R-reqular, then it is a partial system of parameters.

(¢) If R is Cohen-Macaulay and ai, ... ,a,, is a partial system of parameters,
then it is R-regular.

(d) If I << R is an ideal of height m, then there exist a1,... ,an, € I which are
a partial system of parameters.

(e) If R C S is an integral extension of rings and I <@ R, then ht(ST) = ht(I),
where ST denotes the ideal in S generated by I. In particular, if a1, ... ,am
is a partial system of parameters in R, it is also one in S.

Proof. Clearly if a; € p for an associated prime ideal p of (aj,...,a;—1) of
height i — 1, then ht(aq,...,a;) < i — 1. Conversely, if ht(a,...,a;) =
ht(as,... ,a;—1) = i — 1 for some i, then there exists a prime ideal of height
i — 1 containing (a1,...,a;). This prime must then be a minimal prime con-
taining (ai,...,a;—1) and is hence an associated prime of (a1,...,a;—1) (see
Eisenbud [9, Theorem 3.1]). This proves (a). The same theorem in [loc. cit.]
says that the set of zero divisors of R/(a1,...,a;_1) is the union of the asso-
ciated primes of (ai,...,a;—1), from which (b) follows immediately. Now (c)
follows from the unmixedness theorem (see [loc. cit., Corollary 18.14]). To
prove (d), we assume that a1,...,a;—1 € I with ht(as,...,a;—1) have already
been found. Then there exists a; € I which lies in none of the associated primes
of (a1,...,a;—1) of height ¢ — 1, since otherwise I would be contained in one of
these prime ideals by the prime avoidance lemma (see [loc. cit., Lemma 3.3]),
and hence ht(I) < i — 1. By (a), this leads to a partial system of parameters.
To prove (e), let p <t R be a prime of minimal height m containing I, and let
Po ; ; pm = p be an ascending chain of primes. By the going-up theorem
(see [loc. cit, Proposition 4.15]), there exists a chain go C ... C g, of primes
q; < S with gq; N R = p;, and by [loc. cit., Corollary 4.18], this chain cannot
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be refined. Since q,, contains ST, ht(SI) < m. For the reverse inequality, let
90 G --- S dr be an ascending chain of primes in S with SI C g,, r = ht(SI),
and set p; = q; N R. Then by [loc. cit., Corollary 4.18], po g g pr, and
I CSINRCp,. This shows ht(I) <. O

With these facts, we can now deduce the following corollary from Theo-
rem 1.4. Larry Smith pointed out to me that this corollary also follows from
the spectral sequence he studied in [18].

Corollary 1.6. Assume that R is Cohen-Macaulay and G is finite, and that
HY(G,R) =0 for 1 <i < r, where r > 0 is an integer. Let g € H"(G,R) be
nonzero. Then for

I =Annge(g):={a€ R®|a-g=0}<R®
we have
depth;(RY) = min{r + 1,ht(I)}.
In particular, R® is not Cohen-Macaulay if ht(I) > r + 1.
Proof. Assume that there exist ai,...,a,4o € I which form an R%-regular
sequence. By Lemma 1.5(b), the a; are a partial system of parameters in RC.
So by (e) and the finiteness of GG, they are also a partial system of parameters

in R, hence the a; form an R-regular sequence by (c). But since the a; lie in
1, g lies in the kernel of the map (4) from Theorem 1.4. Since g # 0, it follows

by Theorem 1.4 that ai,...,a,;2 is in fact not R%-regular. This proves that
depth;(R®) < r + 1. Also clearly depth;(R%) < ht(T).
By Lemma 1.5(d), there exists a partial system of parameters ay, ... ,a,, of

length m := ht(I) with a; € I. Let m' = min{r + 1,m}. Then a1,...,an is
R-regular, and by Theorem 1.4, it is also R“-regular. Hence depth;(R%) > m/.
If m > r+1, then ay,...,a,12 is a partial system of parameters which is not an
RC-regular sequence, hence R® is not Cohen-Macaulay by Lemma 1.5(c). O

In the above corollary the cohomology group H"(G, R) is regarded as a
module over R, and a non-vacuous statement can be made if I # 0, i.e., if
the element ¢ € H"(G, R) under consideration is a torsion element. If R is an
integral domain with field of fractions Quot(R), then the kernel of the map

H"(G,R) — H" (G, Quot(R))

consists exactly of the torsion elements. But it is well known that
H"(G,Quot(R)) = 0. In fact, by the normal basis theorem Quot(R) is iso-
morphic to the regular module over Quot(RY). Hence H"(G,R) is a torsion
module. We will make use of this in the next section. However, we will need
more precise information on the annihilators than is provided by the above
argument.

Lemma 1.7. Suppose that U is a finitely generated KG-module and let g €
H"(G,U) with r > 0. Let W = KG be the regular module and a =) 50 €
WE. Then a® g =0 as an element of H"(G,W ® U).
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Proof. We first observe that H" (G, W) = 0. This can be seen by the Eckmann-
Shapiro lemma (see Benson [2, Corollary 2.8.4]), for example. It follows that
H" (G, P) = 0 for any projective module P. But W®U is the tensor product of a
projective module and another module, hence it is projective (see, for example,
Benson [2, Proposition 3.1.5]). So H"(G,W @ U) = 0. O

2 Linear actions

In this section, we specialize the assumptions by looking at the standard sit-
uation of invariant theory of finite groups: K is a field, V is a finite dimen-
sional vector space over K, and R = S(V*) is the symmetric algebra of the
dual of V', which is isomorphic to a multivariate polynomial ring. Furthermore,
G < GL(V) is a finite linear group on V, which has a natural action on R.
As in Section 1, we write R® for the invariant ring. Furthermore, let p be the
characteristic of K, which may be 0.

In order to use Lemma 1.7 for finding elements a € R® which annihilate a
given g € H"(G, R), we have to recover (copies of) the regular module in R.
This is done in the next lemma, where we assume that K is algebraically closed,
which allows us to view the elements of R as functions on V. We write Vo <V
for the fixed space of a o € G, and Stabg(v) for the stabilizer of a v € V.

Lemma 2.1. Assume that K is algebraically closed, letm € {1,...,dim(V)} be
an integer and suppose that every element o € G of order p has rank(c—1) > m.
(This assumption is void if p = char(K) = 0.) Then there exist m embeddings

pi: KGR (i=1,...,m)

of the regular KG-module into R such that the polynomials

a; = p; <Za> (t=1,...,m)

ceG

form a partial system of parameters in RS. Moreover, the a; lie in the unique
homogeneous mazimal ideal Rf of RC.

Proof. Suppose by induction that ¢1,...,pr—1 have already been constructed
for a k € {1,...,m}. By assumption, the set

X = {v € V| Stabg(v) has an order divisible by p} = U Ve

o€G,
ord(c)=p

has dimension < n —m, where n = dimg (V). But every associated prime p <1 R
of (a1,...,ar—1) has height £k —1 and Krull dimension n —k+ 1, which is greater
than n — m. Hence there exists a point w, € Vy(p) \ X C V for every such
p, where Vy (p) denotes the variety in V' given by p, and the w, can be chosen
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such that w, # o(wy) for p # p’ and o € G. Furthermore, we can choose a
point vy € V such that the set

{o(vo) | 0 € GYU{w, | p € Ass(ai,... ,ax—1)} U {0}

has exactly |G| + | Ass(a1,... ,ax—1)| + 1 (distinct) elements. In fact, vy has
to avoid the points 0 and o(w,) for 0 € G, and the finite union U,cq\ fia} V7
of proper subspaces. Now there exists a polynomial g € R with the following
properties (where ¢ is the Kronecker-delta):

(1) g(U(UO)) = 50,ida
(ii) Q(U(wp)) = 50’(wp)7wpa
(ifi) ¢(0) = 0.

We define ¢i: KG — R by setting ¢ (0) = o(g). This is clearly a G-map. To
prove that it is injective, suppose that

Z Qg * U(g) =0
oc€G
with o, € K. For 7 € G, evaluation at 7(vg) yields
0= Z a, - 0(g)(T(vg)) = Z s - g(c 1 v) = ay.
oceG ceG

Hence the o(g) are linearly independent, and ¢y, is injective.
The polynomial a; defined in the statement of the lemma is clearly an in-

variant, and 1 ¢ (a1,...,a;) by the property (iii). Evaluating a; at wy, yields
ar(wp) = Y o(g)(wp) = Y g(07 (wp)) = | Stabg(wy)| # 0,
o€G o€G

since w, ¢ X. Because w, € Vy(p), this means that a; lies in none of the

associated prime ideals of (a1,...,ag—1), which by Lemma 1.5(a) shows that
ai,...,ay is a partial system of parameters. The a; lie in Rf since a;(0) =0
by the property (iii) above. This completes the proof. O

Remark 2.2. If |G| is a multiple of p, then by Benson [3, Theorem 4.1.3]
H"(G,K) # 0 for some r > 0. In fact, we see from the proof in [3] that if 0 € G
is an element of order p and if the index of (o) in its normalizer is p®h with

p 1 h, then r can be chosen as 2(p— 1)p®. Since K occurs as the direct summand
S9(V*) in R, it follows that H"(G, R) # 0.

Putting the various strands together, we obtain

Theorem 2.3. Suppose that H" (G, R) # 0 for an integer r > 0 and that every
element 0 € G of order p has rank(c — 1) > r + 2. Then RS is not Cohen-
Macaulay.
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Proof. We may assume that r > 0 is minimal with H" (G, R) # 0. Furthermore,
since H" (G, R) # 0, p must divide the order of G, hence there exist elements
o € G of order p. By the assumption it follows that n := dim(V) > r +
2. Assume that R® is Cohen-Macaulay. Then RC is a free module over the
algebra Klai,...,a,] generated by a homogeneous system of parameters. If
K is the algebraic closure of K, then it follows that K ®, R¢ is free over
Klai,... ,a,], hence K ®, R is also Cohen-Macaulay. So we can assume that
K is algebraically closed. Then by Lemma 2.1 there are m := r 4+ 2 embeddings
©1,--- 5 pm of the regular module K G into R, and the images contain invariants
a; € R® which form a partial system of parameters of length m. Now take
a nonzero g € H"(G,R). Then by Lemma 1.7, a; ® g = 0 as elements in
H"(G,R ® R). Applying the map H"(G,R ® R) — H"(G, R) induced by
R®R — R, f®g + fg yields that a;g = 0 in H"(G, R), hence the a; lie
in the annihilator I of g. Tt follows that ht(I) > m > r 4+ 1, so R® is not
Cohen-Macaulay by Corollary 1.6. O

We obtain the following result on vector invariants.

Corollary 2.4. Suppose that |G| is a multiple of p. Then there exists an m € N
such that S((V*)*)¢ is not Cohen-Macaulay for k > m. Here V* denotes the
direct sum of k copies of V, and S((V*)*) is the symmetric algebra of its dual.
In particular, there erists a KG-module W such that S(W*)€ is not Cohen-
Macaulay.

Proof. By Remark 2.2, there exists an r > 0, such that H"(G, K) # 0. Then
H™(G,S((V*)*)) # 0 for all k € N. Now if & > r + 2, then and every o € G
with o # id acts on V* with rankyx (0 — 1) > r + 2. So the assertion follows
from Theorem 2.3. O

Remark 2.5. As we see by the above proof, one can take m = 3 if G contains
a normal subgroup of index p, since this implies the existence of a nonzero
additive character G — K, or, equivalently, a nonzero element in H'(G, K).
This generalizes one of the results in Campbell et al. [8].

We now study regular representations of finite groups. If G is a finite group
and K a field we shall write V,.., for the regular KG-module. The aim is to
classify all pairs (G, K) such that K[V,e,]¢ is Cohen-Macaulay. T am thankful
to Tan Hughes for raising this question.

Lemma 2.6. If with the above notation |G| is divisible by char(K), then
HY (G, K[Vye4]) #0.

Proof. K[Vyeg) is a polynomial ring with indeterminates z, indexed by elements
of G. Choose a subgroup H < G of order p := char(K) and form the monomial
t = [],cn o, whose stabilizer is H. The module M < K[V,¢,] spanned by
the G-orbit of ¢ is the induced module from the trivial K H-module, hence by
the Eckmann-Shapiro lemma H'(G,M) = H'(H,K) # 0. But M is a direct
summand of K [V,.,], so H' (G, M) is a direct summand of H*(G, K[V,,]). O
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Theorem 2.7. Let G be a finite group and K a field. Then K [V,,]¢ is Cohen-
Macaulay if and only if |G| is not a multiple of the characteristic of K or
G e {ZQ, Z3,Z2 X Zg}

Proof. Suppose that K[V,.,]¢ is Cohen-Macaulay and p := char(K) divides |G]|.
We have to show that then G € {Z,, Z3, Z> X Z>}. Indeed, H' (G, K[V;¢4]) #0
by Lemma 2.6 and an element o € G of order p acts on V,, with rank(c —1) =
|G| - (p — 1)/p. Hence by Theorem 2.3 we must have |G|- (p — 1)/p < 3, so
|G| < 4. So we must only show that G cannot be Z;. Indeed, K[V,¢,]?* is not
Cohen-Macaulay if char(K) = 2 by Bertin [5], or by Theorem 3.6 of this paper.

Conversely, if p { |G| then K[V,¢,]¢ is Cohen-Macaulay by Hochster and
Eagon [11]. For G € {Z5, Z3} the Cohen-Macaulayness follows from Ellingsrud
and Skjelbred [10] since G is a p-group and the dimension of the representation
is < 3. We are left with the case G = Z3 X Z», and here the invariant ring can
be looked up in Adem and Milgram [1, Chapter 3, Corollary 1.8] or calculated
with a computer (see Kemper and Steel [15]). The result is a Cohen-Macaulay
ring. O

We note a few more applications of Theorem 2.3.

Corollary 2.8. Suppose that p = char(K) > 5 and that G acts as a transitive
permutation group on a basis ey, ... e, of a vector space W over K, where n
s a multiple of p.

(a) LetV be the quotient module W/K - (e1 + --- +ey). Then R¢ = S(V*)¢
is not Cohen-Macaulay.

(b) Suppose that G contains a transitive cyclic subgroup, n > 5, and Vy is the
kernel of the trace map

m:V = K, Zaiei+K-(el+---+en)»—>Zai.
=1

i=1
Then S(Vy)€ is not Cohen-Macaulay.

Proof. Consider the exact sequence
0—K—W—=V—0.

By the transitivity of G, a G-map from W into K must assign the same value
to all e;. Composing this with the map K — W yields the zero-map K — K.
Hence the sequence is non-split. Dualizing gives a non-split extension of K by
V*, which shows that H'(G,V*) # 0, hence H!(G,R) # 0. Now consider the
exact sequence

00— K— Wy, —Vy —0,

where Wy is the kernel of the trace map, and assume there exists a 0y € G with
oo(e;) = ej+1, where the indices are taken modulo n. Then a G-map Wy — K
must take the same value « on all e; — e;11, hence the vector e; + -+ + ¢, =
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St i-(ei—eir1) is mapped to ("'2"1)04 = 0. As above, the sequence is non-split,
and we obtain H!(G,Vy) # 0.

The proof is complete if we can show that ranky (o — 1) and ranky, (o — 1)
are at least 3 for every element o € G of order p. We can assume that the
disjoint cycle representation of ¢ contains the cycle (1,2,...,p), and will show
that (o —1)(e1), (6 — 1)(ez2), (0 — 1)(e3) are linearly independent in V. Indeed,

a linear relation has the form
ai(es —e1) +as(es —ea) + as(es —e3) = aler + -+ + ey)

with a, a1, as, a3 € K. It follows that @ = a3 = as = a; = 0. Next we show
that (¢ —1)(e2 —e1),(c — 1)(es — e2), (6 — 1)(eq — e3) are linearly independent
in Vy if n > 5. Here we obtain

a(es —2es +e1) + as(es — 2e3 + e2) + as(es — 2e4 +e3) = ale; + -+ + eyn),
so again all ; are zero. O

Example 2.9. If n is a multiple of p and p > 5, then the symmetric group .S, is
an example of the type dealt with in Corollary 2.8. With the notation from the
corollary, we get the result that S(V*)° is not Cohen-Macaulay, and neither is
S(Vg)S» if n > 5. S, acts on both V and V; as a reflection group. Thus we have
found an infinite series of finite reflection groups whose invariant rings are not
even Cohen-Macaulay. Another such series, which consists of abelian p-groups,
was given by Nakajima [16] (see Example 3.10 below). In our example, the
action of S, on Vj is irreducible for n > 5. It is quite surprising that by Kemper
and Malle [14] the field of fractions K (V) of S(V;)%» is a rational function
field over K. What may be even more surprising is that although S(V*)%~ is
not Cohen-Macaulay, the invariant ring S(V) of the dual representation is a
polynomial ring. In fact it is easily seen that S(V)5» is generated by the images
of the elementary symmetric polynomials sa(e1,...,e4),...,8n(€1,... ,€n) €
S(W) in S(V).

It is sometimes possible to read Theorem 2.3 “backwards” to obtain lower
bounds on r > 0 such that H"(G,R) # 0. This leads to an example where
easy facts from invariant theory can be used to obtain non-trivial statements of
group theory.

Ezample 2.10. Suppose that G = S, or G = A,, is the symmetric or alternating
group on n letters. We look at several permutation representations of G.

(a) First, let V' be the natural permutation module, and p = char(K) > 3.
(We do not assume that p divides n.) The invariant ring R® is Cohen-
Macaulay. In fact, it is isomorphic to a polynomial ring if G = S, and
a hypersurface of G = A,. For an element ¢ € G of order p we have
rank(c —1) > p—1. It now follows by Theorem 2.3 that H" (G, R) = 0 for
0 <r < p-—3. In particular, H"(G, K) = 0 for such r. Thus the fact that
S, and A, have no non-split central extension with kernel of order p > 5
can easily be derived from Theorem 2.3.
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(b) Now suppose that V is a direct sum of m copies of the natural permutation
module of G (m € N). In order to calculate the cohomology of R, we look
at a decomposition of R into a direct sum of K G-modules, which will
yield a decomposition of H"(G,R). Such a decomposition is given by
taking the submodules of R spanned by G-orbits of monomials in the
variables z;; (1 <i <m, 1 <j <n), which are a basis of V* on which
G acts by o(z; ;) = z;,(j)- Each of these modules is induced from the
trivial module over K H, where H is the stabilizer of a monomial. So
by the Eckmann-Shapiro lemma, the cohomology of G with values in the
span of a monomial-orbit is equal to the cohomology of the stabilizer H
of the monomial with values in K. But we see that such a stabilizer is
either a direct product of symmetric groups (possibly on fewer letters)
or the subgroup of even permutations contained in this product, so it
has no normal subgroup of index p except for the case G = A3, hence
H'(H,K) = 0 in all other cases. It follows that H'(G, R) = 0 if G # As.
In fact, one can combine the arguments from parts (a) and (b) of this
example to show that H"(G,R) =0for 0 <r < p—3.

(c) Let V be as in (b) and assume that G = S, or A,. Take an element o € G
of order p, then (o) has an index divisible by p — 1 in its normalizer. It
follows by Remark 2.2 that the first » > 0 with H"(G, R) # 0 is bounded
from above by 2(p — 1). On the other hand, rank(c — 1) = m(p — 1), so
by Theorem 2.3, R® is not Cohen-Macaulay if m > 3. In view of (b),
this yields an example where the higher cohomology modules are indeed
needed.

3 A closer look at the geometry

In this section we restrict our point of view drastically by only considering
H'(G, R) and most of the time only cocycles with values in K. Using H!(G, R)
means that we are looking for partial systems of parameters of length 3 which are
not R%-regular sequences. It is surprising how much can be said in spite of this
narrowing of possibilities. The benefit of the restriction lies in a more accurate
geometric description of the ideal I = Annge (g) occurring in Corollary 1.6.

We adopt the same notation as in the previous section, so V is a finite
dimensional vector space over a field K of characteristic p, and G < GL(V)
is a finite linear group on V' with the natural action on the symmetric algebra
R = S(V*) of the dual. Furthermore, if X C V is a set of points, we write
Ir(X) and Ire(X) for the ideals of all polynomials or invariants, respectively,
which vanish on all points of X. If I C R is a set of polynomials, we write
Vv (I) for the set of points in V' where all f € I vanish. It is convenient to use
the bar resolution, so we view cocycles from Z'(G, M) as maps G — M which
we denote by (95)oca-
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Proposition 3.1. Let g € H*(G, R) be nonzero, (95)scc € Z(G, R) a cocycle
representing g, and let

X= (V' \Wi(g)CV.
cEG

Then Annge(g) C Ige (X).

Proof. Take f € I := Anngc (g). Then there exists an h € R such that f-g, =
(0 — 1)h for all ¢ € G. Hence if a point v € V lies in V \ Vy (g, ) for some o,
we obtain f(v) - g,(v) = h(c7t(v)) — h(v) = 0, hence f(v) = 0. This shows that
f € Ine (X). O

We are going to prove the reverse inclusion for the special case that the cocy-
cle (g,) takes values in K. Before doing so, we present the following cautionary
example.

Ezample 3.2. Suppose that G = (o) is a cyclic group and we are interested in
computing the ideal I <1 R® consisting of all (¢ — 1)h € R® with h € R. If
v € V7, then ((¢ — 1)h)(v) = h(c~1(v)) — h(v) = 0. If on the other hand v lies
in V'\ V7, then there exists an h € R which takes different values on v and on
o~ 1(v), hence ((c — 1)h)(v) # 0. So one might be tempted to conclude that
the radical ideal of I is exactly Ire (V7). But if K is of characteristic 0, then I
must be the zero ideal, since (0 — 1)h = g € RY implies 0*(h) = h+1 - g, hence
g = 0 or G would be infinite. So the conclusion v/I = Ire(V7) is in general
quite wrong.

It is surprising that in the situation of Proposition 3.5 we will obtain exactly
the result that turned out to be false in the above example. In order to move
on safe ground, we prove

Lemma 3.3. Suppose that K is algebraically closed and let A be a subalgebra
of R such that R is finitely generated as a module over A. Then for an ideal
I < A we have

VI =I4(Vy (D).

Proof. If f € /I, then f* € I for some k € N, so for v € Vy(I) we have
f¥(v) =0, hence f € I4(Vy(I)).

Conversely, suppose that f € I4(Vy(I)). Then f lies in all maximal ideals
m < R in R containing I, since K is algebraically closed. Let p << A be a prime
ideal in A containing I. Then by the going-up theorem, there exists a prime
ideal q <0 R such that N A = p. By Hilbert’s Nullstellensatz (Eisenbud [9, The-
orem 4.19]), q is equal to the intersection of all maximal ideals in R containing
q. But f lies in each of these maximal ideals, hence f € q and then also f € p,
since f is an invariant. We have shown that f lies in every prime ideal in A
containing I, and by Eisenbud [9, Corollary 2.12], the intersection of all these
prime ideals is the radical of I. O

If g € H(G, K), then the cocycle (g,) representing g is uniquely determined
and is in fact a homomorphism from G into the additive group of K. Hence we
can look at its kernel.
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Proposition 3.4. Assume that K is algebraically closed and let g € H*(G, K)
be nonzero with kernel N <\ G. Let J <I R® be the image of the relative transfer

5 : RN = RC, =Y oi(f),
i=1
where o1,...,0. 15 a system of coset representatives of N in G. Then
VI =1Ipe(X) with X= [J V°.
c€EG\N

Proof. In view of Lemma 3.3, we must show that X = Vy(J). So take a point
v € V for some o € G\ N. We have o? € N, since go» = p-g, =0. Let H < G
be the subgroup generated by N and o, then for h € R we have

Tei(h)(v) = Y h(o*(v) = Z h(v) =0,

hence Tr§ (h)(v) = 0. This shows that v € Vy(J).
Now suppose that v € V' '\ X. An easy calculation shows that this implies

that the N-orbits of o;(v) for ¢ = 1,... ,r are pairwise disjoint. Hence there
exists an h € RN such that h(o; ' (v)) = §.. It follows that Tr§(h)(v) = 1,
hence v ¢ Vy (J). O

I owe the idea of the preceding proof to a conversation with Jim Shank. We
now put Proposition 3.1 and Proposition 3.4 together.

Proposition 3.5. Assume that K is algebraically closed and let g € H' (G, K)
be nonzero with kernel N <1 G. Moreover, let I = Annge(g) be its annihilator.
Then
VI=1Ipe(X) with X= |J V.
oc€G\N

Proof. The inclusion /I C Ire (X) was already shown in Proposition 3.1. So
suppose that f € Irc(X). Then by Proposition 3.4, f* = ’I‘r%(h) with h € RN
and k € N. Now G/N is embedded in K, so it must be an elementary abelian

p-group. Take o4,...,0m, € G to be generators for this group, then
p—1
fr= 3 ool (B) = (o1 = )P (o — 1P (),
B1 yen yim =0

where we used the polynomial identity 1 + X +--- + XP~1 = (X — 1)?"! over
K. Write 6; = 0; — 1 and form

B S g (8 ).
i=1
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Since 67 yields zero when applied to an invariant under N, it follows that Sih =
go. - fF, and from that (0 — 1)h = g, - f* for any 0 € G. Hence f* lies in
I = Anngc(g) and so f € V1. O

An automorphism o # id of a vector space is called a bireflection if rank(c—
1) < 2. In the case » = 1 of Theorem 2.3, the hypothesis is that G contains no
bireflection of order p. With the help of Proposition 3.5, we can now weaken
this hypothesis.

Theorem 3.6. Assume that G has a normal subgroup N of index p, which
contains all bireflections in G. Then RS is not Cohen-Macaulay.

Proof. As in the proof of Theorem 2.3, we can assume that K is algebraically
closed. There is an element g € H'(G, K) with kernel N. Since all bireflections
of G are contained in N, the codimension of all V7 for 0 € G\ N is at least 3.
Hence for X = U,cq\nV? we have ht(/ge (X)) > 3. But by Proposition 3.5,
Irs(X) is the radical of I = Annge(g), hence ht(I) > 3, and the theorem
follows from Corollary 1.6. O

If G is not generated by bireflections, then the bireflections in G' generate
a proper normal subgroup. If G is a p-group, then this can be extended to a
normal subgroup of index p. So we obtain

Corollary 3.7. If G is a p-group and R is Cohen-Macaulay, then G is gen-
erated by bireflections.

Remark 3.8. Kac and Watanabe proved in [12] that if the invariant ring of
a finite linear group G is a complete intersection, then G is generated by bire-
flections. Since the complete intersection property implies the Cohen-Macaulay
property (see Stanley [19]), we have recovered their result for the special case of
p-groups. The remarkable thing is that in this case the much weaker hypothesis
of Cohen-Macaulayness of the invariant ring suffices.

We can do better than Theorem 3.6 if we widen our point of view just very
slightly by multiplying a 1-cocycle with values in K, as considered in Theo-
rem 3.6, by an invariant from R®. This leads to the following improvement.

Theorem 3.9. Suppose that G has a normal subgroup N with factor group an
elementary abelian p-group, and suppose that there is a o9 € G \ N, 0 not a
bireflection, such that for all bireflections o0 € G\ N we have

Vee g ve.
Then RS is not Cohen-Macaulay.

Proof. As before, we can assume that K is algebraically closed. Write

X = U V7 and X' = U Ve,

oc€G\N cEG\N,
o bireflection
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Then the hypothesis says that X’ C X. Since X and X' are closed and G-stable,
there exists an invariant A € Ige (X') \ Ige (X). Let I < R be the ideal of the
invariants which vanish on all fixed spaces V7 for o € G\ N not a bireflection.
Then ht(I) > 3, hence by Lemma 1.5(d) there exist a1, as,as € I which form a
partial system of parameters. We have h - a; € Iga (X).

There exists a g € H*(G, K) with kernel N. By Proposition 3.5, the h-a; lie
in the radical of the annihilator of g, hence h*-a¥ € Annpc(g) for some k € N. It
follows that a¥ € Annge(g') with ¢’ = h¥-g (i = 1,2,3). The proof is complete
by Corollary 1.6 if we can show that g’ is nonzero. But that is equivalent to
h* ¢ Annge(g), which is true since h ¢ Ire (X) = /Annge(g). O

Clearly Theorem 3.6 cannot be used to show the non-Cohen-Macaulayness
of RS in the case that G is generated by bireflections. However, in the following
example G is even generated by reflections, and we are able to prove that RS
is not Cohen-Macaulay by using Theorem 3.9.

Ezample 3.10. In [16], Nakajima gave the following groups as an example of
reflection groups whose invariant rings are not Cohen-Macaulay. Let K be a
finite field, m > 3, n = 2m + 1, and consider the group G consisting of the
n X n-matrices

1
0
1
1
Qp am | 1
Om_1 QO 1
with ag,...,am € K. Our goal is to recover Nakajima’s result that R is not

Cohen-Macaulay. Let N <1 G be the subgroup consisting of all matrices with
&, = 0. For any bireflection ¢ € G\ N, a,, must be nonzero, and at most one
other a; can be nonzero, since m > 3. Hence the (m + 1)-st coordinate of a
vector in V7 must be zero. Now let o¢ be the matrix with a9 = ... = a,, = 1.
Then oy € G\ N is not a bireflection, and V?° contains a vector whose (m+1)-st
coordinate is nonzero. This means that V7° ¢ V7 for all bireflections 0 € G\ N.
Hence the result follows by Theorem 3.9.

The argument in the above example is based on a more elementary proof
which was shown to me by Tan Hughes.
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