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Introduction

In the winter of 1999 I gave a series of lectures at Queen’s university about some recent
results concerning the Cohen-Macaulay property of invariants of Hopf algebras. Tony
Geramita asked me to write up my notes for the Queen’s Papers, and I happily took up his
suggestion. Although this article focuses on the proof of one main theorem (Theorem 2.11
on page 12), it has some of the character of a survey article, since the results already
appeared in my (German) habilitation thesis [10], and I am trying to explain concepts in
more detail and give more background than in an original article.

This work originated in the study of the Cohen-Macaulay property of invariant rings
of finite groups [11], which led to results about invariants of algebraic groups as well [12].
Actions of Hopf algebras are a natural generalization of group actions. Apart from group
rings, Lie algebras (or, more precisely, their universal enveloping algebras) are an interesting
incarnation of Hopf algebras, so everything that we say in this article will apply to invariants
if Lie algebras as well. By a celebrated theorem of Hochster and Roberts [8], invariant rings
of linearly reductive groups are always Cohen-Macaulay, i.e., they are free modules of finite
rank over a subalgebra which is isomorphic to a polynomial ring. With the proper definition,
this carries over to invariants of linearly reductive Hopf algebras (see Theorem 3.4 in this
paper). For finite groups, Hochster and Roberts’s result means that the invariant ring is
Cohen-Macaulay if the characteristic of the ground field does not divide the group order
(see Hochster and Eagon [7]). On the other hand, it has been generally observed that
invariant rings of finite groups tend not to be Cohen-Macaulay if the characteristic divides
the group order. However, it is still an open question to characterize exactly those groups
and representations for which the invariant ring is Cohen-Macaulay.

In this article we prove that if a Hopf algebra is geometrically reductive but not linearly
reductive, then there exists a representation whose invariant ring is not Cohen-Macaulay.
This constitutes a partial converse to the (generalized) theorem of Hochster and Roberts.
This means, for example, that for each of the classical algebraic groups in positive charac-
teristic there exists a representation such that the invariant ring is not Cohen-Macaulay.
Moreover, every finite group of order divisible by the characteristic of the ground field has
a representation with non-Cohen-Macaulay invariant ring. This gives a partial answer to
the question raised above. For (universal enveloping algebras of) Lie algebras, the main
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theorem says the following: Any non-zero, finite dimensional Lie algebra g in positive char-
acteristic has a finite dimensional representation V such that the invariant ring (i.e., the
set of polynomials in the symmetric algebra S(V ) on which all elements of g act as zero)
is not Cohen-Macaulay.

In the first section of the paper we recall the concept of Hopf algebras and their in-
variants, and introduce cohomology. This is used as the basic tool in Section 2 to de-
velop a criterion for regular sequences in the invariant ring. It turns out that in order to
prove that the invariant ring is not Cohen-Macaulay, it suffices to find a non-zero element
α ∈ H1(Λ, S(V )) such that the annihilator AnnS(V )Λ(α) contains a sequence of length three
which generates an ideal of height three in S(V ) as well as in S(V Λ). In Section 3 such
a situation is manufactured under the assumption that we have a geometrically reductive
but not linearly reductive Hopf algebra. This proves the main theorem. In order to apply
the theorem, one must interpret the concept of linear and geometric reductivity for the
various classes of objects which occur as Hopf algebras. This is done in the fourth section.

The work for this paper benefited greatly from conversations (or correspondences) with
Hanspeter Kraft, Kay Magaard, Vladimir Popov, Alexander Premet, Jean-Pierre Serre,
Moss Sweedler, and David Wehlau. I would like to express my thanks to all of them, and
to those who participated in the winter lectures at Queen’s.

1 Hopf Algebras

Suppose that a group G acts by automorphisms on an algebra R over a field K. Then R is
a module over the group ring KG, and for a, b ∈ R and σ ∈ G we have σ(ab) = σ(a)σ(b).
Thus R is not an algebra over KG in the usual sense. Moreover, if U and V are KG-
modules, then U ⊗K V is also a KG-module, where

aσ(u⊗ v) = a(σ(u)⊗ σ(v))

for a ∈ K, σ ∈ G, u ∈ U , and v ∈ V . This is quite unusual, since in general the tensor
product of two modules over an algebra A does not have the structure of an A-module.
We make the convention here that throughout this article all tensor products
are over K. Also note that HomK(U, V ) (and in particular the dual V ∗ = HomK(V,K))
is again a KG-module. These “peculiarities” of the algebra KG are captured by the fact
that KG is a Hopf algebra with antipode. We recall the definition of a Hopf algebra and
then present a few examples, including group rings.

Definition 1.1. (a) A Hopf algebra over a field K is an associative K-algebra Λ with
unit and homomorphisms of algebras ∆: Λ → Λ ⊗ Λ (“comultiplication”) and
ε: Λ→ K (“counit”) such that the diagrams

Λ ∆ -Λ⊗ Λ

?

∆ id⊗Λ

?

Λ⊗ Λ ∆⊗id-Λ⊗ Λ⊗ Λ



Invariants of Hopf Algebras 3

and

Λ

�
�
��	

∼=

?

∆
@
@
@@R

∼=

Λ⊗K id⊗ε� Λ⊗ Λ ε⊗id-K ⊗ Λ

commute.

(b) A Hopf algebra Λ is said to be commutative if it is commutative as a K-algebra,
and cocommutative if the diagram

Λ

�
�
��	

∆
@
@
@@R

∆

Λ⊗ Λ swap - Λ⊗ Λ

commutes, where the lower map is a⊗ b 7→ b⊗ a.

(c) An antipode of a Hopf algebra Λ is a K-linear map η: Λ→ Λ such that the diagram

Λ⊗ Λ ∆� Λ ∆-Λ⊗ Λ

ε
?

?

η⊗id K id⊗η

??

Λ⊗ Λ mult- Λ mult� Λ⊗ Λ

commutes.

(d) A module over a Hopf algebra Λ is a (left-)module over Λ as a ring. K becomes
a Λ-module via the counit ε. If U and V are Λ-modules, then U ⊗ V has a natural
structure as a (Λ ⊗ Λ)-module (this is true for any K-algebra Λ), and becomes a
Λ-module via the comultiplication ∆. More explicitly, if ∆(λ) =

∑r
i=1 µi ⊗ νi for a

λ ∈ Λ, then for u ∈ U and v ∈ V we have

λ(u⊗ v) =
r∑
i=1

µiu⊗ νiv.
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If V is a Λ-module, then the dual V ∗ has a natural structure as a module over the oppo-
site algebra Λop. It can be shown that an antipode η always is an anti-homomorphism
of algebras (see Sweedler [22, Proposition 4.0.1 (1)]). Therefore if Λ has an antipode
η, V ∗ becomes a Λ-module via η. Now the natural isomorphism HomK(U, V ) ∼= U∗⊗V
makes HomK(U, V ) into a Λ-module. More explicitly, if ∆(λ) =

∑r
i=1 µi ⊗ νi for a

λ ∈ Λ, then for f ∈ HomK(U, V ) we have

λf : U → V, u 7→
r∑
i=1

µif(η(νi)u).

(e) If V is a module over a Hopf algebra Λ, we write

V Λ := {v ∈ V | λv = ε(λ)v ∀λ ∈ Λ}

and call this the space of invariants of Λ (see Montgomery [13, p. 13]).

(f) A Λ-algebra is an associative, commutative K-algebra R with unit which has a
structure of a Λ-module such that 1R ∈ RΛ (the unit is an invariant), and the mul-
tiplication mult : R ⊗ R → R is a homomorphism of Λ-modules. More explicitly, we
demand that λ(ab) =

∑r
i=1(µia)(νib) for a, b ∈ R.

We look at a few examples of Hopf algebras, which show that Hopf algebras provide an
umbrella for various structures that are quite familiar.

Example 1.2. (a) Let G be a group, K a field, and Λ := KG the group ring. Λ becomes
a cocommutative Hopf algebra with ∆(σ) = σ ⊗ σ and ε(σ) = 1 for σ ∈ G. An
antipode is given by η(σ) = σ−1. We see that with these definitions tensor products
and homomorphism spaces of Λ-modules are given structures as Λ-modules in the
usual way. If V is a Λ-module, we sometimes write V G for V Λ, which is the fixed
space under the G-action. Also notice that a Λ-algebra is nothing else than a K-
algebra with an action of G by automorphisms fixing K.

(b) Let g be a Lie algebra over a field K and Λ := U(g) the universal enveloping algebra.
In order to make Λ into a Hopf algebra, it is enough to define ∆ and ε on g, since
Λ is generated by g as a K-algebra. We set ∆(x) = x ⊗ 1 + 1 ⊗ x and ε(x) = 0 for
x ∈ g. An antipode is given by η(x) = −x.

A module over Λ is also a module over the Lie algebra g by restricting the action, and
conversely a g-module is endowed with a Λ-action by the universal property of the
universal enveloping algebra. In more sophisticated language, the module categories
of g and Λ are equivalent. A vector v ∈ V is invariant if and only if xv = 0 for all
x ∈ g. We sometimes write V g for V Λ. By the special form of the comultiplication,
a Λ-algebra is a K-algebra with an action of g by derivations.

(c) A commutative Hopf algebra Λ with antipode is nothing else than the coordinate
ring of an affine group scheme G = Spec(Λ) (see, for example, Waterhouse [23,
Theorem 1.4]). Λ is cocommutative if and only if G is abelian.
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(d) The following example is closely related to the above: Let G be a finite group, K
a field, and let Λ := Fun(G,K) be the algebra of functions from G into K with
pointwise addition and multiplication. Define ε: Λ→ K by ε(f) = f(1), and ∆: Λ→
Λ⊗ Λ ∼= Fun(G×G,K) by

∆(f): G×G→ K, (σ, τ) 7→ f(στ).

This makes Λ a commutative Hopf algebra with an antipode given by η(f): G →
K, σ 7→ f(σ−1). For σ ∈ G, denote by δσ ∈ Λ the function τ 7→ δσ,τ (the Kronecker
delta).

Let V be a Λ-module. Since the δσ are orthogonal idempotents, Vσ := δσV yields a
decomposition

V =
⊕
σ∈G

Vσ.

Thus V has the structure of a G-graded vector space. Conversely, any G-graded
vector space V becomes a Λ-module by setting f · v = f(σ)v for f ∈ Λ and v ∈ Vσ.
In other words, the module category of Λ is equivalent to the category of G-graded
vector spaces. The invariant space of V is simply the graded component V1 associated
to the unit element of G. A Λ-algebra is a G-graded algebra.

(e) Let Λ := P∗ be the Steenrod algebra over a finite field K = Fq. We refer to Smith [19,
Section 11.1] for the definition. P∗ is generated by the Steenrod operations Pk. Λ
becomes a cocommutative Hopf algebra by ∆(Pk) =

∑k
i=0 P i⊗Pk−i and ε(Pk) = δk,0.

However, Λ does not have an antipode. A Λ-algebra is exactly what Smith calls an
algebra over the Steenrod algebra. /

Proposition 1.3. Let Λ be a Hopf algebra and R a Λ-algebra.

(a) For f ∈ RΛ, multiplication with f provides a homomorphism R→ R of Λ-modules.

(b) RΛ is a subalgebra of R.

Proof. (a) Take f ∈ RΛ, g ∈ R, and λ ∈ Λ with ∆(λ) =
∑r

i=1 µi ⊗ νi. Then

λ(fg) =
r∑
i=1

(µif)(νig) =
r∑
i=1

(ε(µi)f)(νig) = f ·
r∑
i=1

ε(µi)νig = f · (λg),

where the second diagram in Definition 1.1(a) was used.

(b) We have 1R ∈ RΛ. Moreover, if f, g ∈ RΛ and λ ∈ Λ, then by (a)

λ(fg) = f · (λg) = fε(λ)g = ε(λ)(fg),

hence fg ∈ RΛ.

We will need the following lemma, whose proof was shown to me by Moss Sweedler.
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Lemma 1.4. Let Λ be a Hopf algebra with antipode and U, V Λ-modules. Then

(HomK(U, V ))Λ = HomΛ(U, V ).

Proof. Take ϕ ∈ HomΛ(U, V ). Then for λ ∈ Λ with ∆(λ) =
∑r

i=1 µi ⊗ νi and u ∈ U we
have

(λϕ)(u) =
r∑
i=1

µiϕ(η(νi)u) =
r∑
i=1

µiη(νi)ϕ(u) = ε(λ)ϕ(u),

where the diagram in Definition 1.1(c) was used. Hence ϕ ∈ HomK(U, V )Λ.
The opposite inclusion is much harder. For λ ∈ Λ with ∆(λ) =

∑r
i=1 µi ⊗ νi, set

∆(µi) =
s∑
j=1

αi,j ⊗ βi,j and ∆(νi) =
t∑

k=1

γi,k ⊗ δi,k.

By coassociativity (the first diagram in Definition 1.1(a)) we have∑
i,j

αi,j ⊗ βi,j ⊗ νi = (∆⊗ id)(∆(λ)) = (id⊗∆)(∆(λ)) =
∑
i,k

µi ⊗ γi,k ⊗ δi,k.

For ϕ ∈ HomK(U, V ) and u ∈ U , this identity gives rise to∑
i,j

αi,jϕ(η(βi,j)νiu) =
∑
i,k

µiϕ(η(γi,k)δi,ku) =
∑
i

µiϕ(ε(νi)u) = λϕ(u).

If ϕ ∈ HomK(U, V )Λ, then
s∑
j=1

αi,jϕ(η(βi,j)νiu) = (µiϕ)(νiu) = ε(µi)ϕ(νiu).

With the above, this yields

λϕ(u) =
r∑
i=1

ϕ(ε(µi)νiu) = ϕ(λu).

This shows that ϕ ∈ HomΛ(U, V ).

We now introduce cohomology of Hopf algebras. Take a projective resolution

· · · ∂2−→ P2
∂1−→ P1

∂0−→ P0 −→ K −→ 0

of K (as a Λ-module). For a Λ-module V , we obtain the complex

HomΛ(P0, V )
∂∗0−→ HomΛ(P1, V )

∂∗1−→ HomΛ(P2, V )
∂∗2−→ · · · ,

with ∂∗i (f) = f ◦ ∂i. The i-th cohomology is defined as

H i(Λ, V ) := ExtiΛ(K,V ) := ker(∂∗i )/ im(∂∗i−1),

where we formally set ∂∗i = 0 for i < 0. The cohomology H i(Λ, V ) is independent of the
choice of the projective resolution (see Benson [1, p. 29]). As an important tool we have
the long exact sequence of cohomology (see Benson [1, Proposition 2.5.3(ii)]). For later use
and to gain some experience in working with cohomology, we prove the following lemma.
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Lemma 1.5. If Λ is a Hopf algebra and V a Λ-module, then

H0(Λ, V ) ∼= V Λ.

Proof. By the second diagram in Definition 1.1(a), ε is not the zero-map, hence we can
choose a projective resolution which starts as

· · · −→ P1
∂0−→ Λ ε−→ K −→ 0.

Hence H0(Λ, V ) = {ϕ ∈ HomΛ(Λ, V ) | ϕ ◦ ∂0 = 0}. We have an isomorphism of vector
spaces

HomΛ(Λ, V ) ∼−→ V, ϕ 7→ ϕ(1).

Assume that ϕ(1) ∈ V Λ. Then for f ∈ P1 we have

ϕ(∂0(f)) = ∂0(f)ϕ(1) = ε(∂0(f))ϕ(1) = 0

by the exactness of the resolution, hence ϕ ∈ H0(Λ, V ). Conversely, take ϕ ∈ H0(Λ, V ).
Then ker(ε) = im(∂0) ⊆ ker(ϕ). For λ ∈ Λ we have that λ − ε(λ) lies in the kernel of ε,
hence

λϕ(1) = (λ− ε(λ))ϕ(1) + ε(λ)ϕ(1) = ϕ(λ− ε(λ)) + ε(λ)ϕ(1) = ε(λ)ϕ(1).

Therefore ϕ(1) ∈ V Λ. Thus the restriction of the above isomorphism to H0(Λ, V ) yields
the desired isomorphism.

2 Regular sequences and Cohen-Macaulay rings

In this section, all rings and algebras (except for Hopf algebras) are associative, commuta-
tive, and with unit. If a1, . . . , ak ∈ R are elements of a ring, we write

(a1, . . . , ak)R = {a1f1 + · · ·+ akfk | f1, . . . , fk ∈ R}

for the ideal generated by the ai. We recall the definition of a regular sequence.

Definition 2.1. Let R be a ring. A sequence a1, . . . , ak ∈ R is called R-regular if the
following two conditions are satisfied.

(a) (a1, . . . , ak)R 6= R, and

(b) for 1 ≤ i ≤ k, multiplication with ai is injective on R/(a1, . . . , ai−1)R.

The goal of this section is to study the following question: If R is an algebra over a
Hopf algebra Λ and a1, . . . , ak ∈ RΛ are invariants forming an R-regular sequence, under
which condition is this sequence also RΛ-regular? For reasons that will become clear later,
we will be especially interested in regular sequences of length 3.

Let R be a ring and a1, a2, a3 ∈ R. We consider the Koszul complex K(a1, a2, a3;R),
which in this case is given by

0 −→ R
∂2−→ R3 ∂1−→ R3 ∂0−→ R,
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where the R-homomorphisms ∂i are as follows: If e1, e2, e3 is the standard basis for R3,
then ∂0(ei) = ai. Furthermore, if we label the standard basis vectors of the other R3 by
ei,j (1 ≤ i < j ≤ 3), then ∂1(ei,j) = aiej − ajei. Finally, ∂2(1) = a1e2,3 − a2e1,3 + a3e1,2. It
is a general fact that the Koszul complex K(a1, . . . , ak;R) is exact if a1, . . . , ak is R-regular
(see Eisenbud [4, Corollary 17.5]). Since we need a partial converse for this result, we will
give an elementary proof for the case k = 3.

Lemma 2.2. Let R be a ring and a1, a2, a3 ∈ R.

(a) If a1, a2, a3 is R-regular, then K(a1, a2, a3;R) is exact.

(b) If the part

R3 ∂1−→ R3 ∂0−→ R

of K(a1, a2, a3;R) is exact, then multiplication with a3 is injective on R/(a1, a2)R.

Proof. (a) Since a1 is not a zero-divisor, ∂2 in K(a1, a2, a3;R) is injective. Now suppose
that ∂1(y1e2,3 + y2e1,3 + y3e1,2) = 0. This means that

(−y2a3 − y3a2)e1 + (−y1a3 + y3a1)e2 + (y1a2 + y2a1)e3 = 0.

From the regularity it follows that y1 = za1 with z ∈ R. Now (za2 + y2)a1 = 0 and
(−za3 +y3)a1 = 0, hence y2 = −za2 and y3 = za3. Therefore y1e2,3 +y2e1,3 +y3e1,2 =
∂2(z). This shows the exactness at the left R3. To prove the exactness at the right
R3, suppose ∂0(x1e1 +x2e2 +x3e3) = 0, i.e., x1a1 +x2a2 +x3a3 = 0. By the regularity,
this implies x3 ∈ (a1, a2)R, so x3 = y2a1 + y1a2 with yi ∈ R. We obtain the equation

(x1 + y2a3)a1 + (x2 + y1a3)a2 = 0,

from which x2 + y1a3 = y3a1 with y3 ∈ R follows by the regularity. Hence x2 =
y3a1 − y1a3. Finally, we obtain

(x1 + y2a3 + y3a2)a1 = 0,

which yields x1 = −y2a3 − y3a2. By the definition of ∂1, it now follows that

x1e1 + x2e2 + x3e3 = ∂1(y1e2,3 + y2e1,3 + y3e1,2),

which completes the proof of (a).

(b) Suppose that we have x3a3 ∈ (a1, a2)R with x3 ∈ R. Then x1a1+x2a2+x3a3 = 0 with
xi ∈ R, hence ∂0(x1e1 +x2e2 +x3e3) = 0. By the exactness, there exist y1, y2, y3 ∈ R
such that

x1e1 + x2e2 + x3e3 = ∂1(y1e2,3 + y2e1,3 + y3e1,2).

Evaluating the e3-coefficient of this equation yields x3 = y1a2 + y2a1. Therefore
x3 ∈ (a1, a2)R, as claimed.

We return to the question posed after Definition 2.1 and give a cohomological criterion
which decides whether an R-regular sequence a1, a2, a3 ∈ RΛ is also RΛ-regular. Notice that
since multiplication with an invariant is a Λ-endomorphism on R by Proposition 1.3(a), it
induces endomorphisms on the cohomology spaces H i(Λ, R).
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Theorem 2.3. Let Λ be a Hopf algebra, R a Λ-algebra, and a1, a2, a3 ∈ RΛ a R-regular
sequence consisting of invariants. Then a1, a2, a3 is RΛ-regular if and only if the homo-
morphism

H1(Λ, R) −→ H1(Λ, R)3 (2.1)

induced by multiplication with the ai is injective.

Proof. We have 1 /∈ (a1, a2, a3)R and therefore also 1 /∈ (a1, a2, a3)RΛ. Hence the condi-
tion (a) in Definition 2.1 is satisfied. Moreover, multiplication with a1 is injective on R and
hence also on RΛ. Now suppose that x1a1 = x2a2 with x1, x2 ∈ RΛ. Then x2 = ya1 with
y ∈ R. We claim that y ∈ RΛ. Indeed, for λ ∈ Λ we have

a1(λ− ε(λ))y = (λ− ε(λ))(a1y) = (λ− ε(λ))x2 = 0,

hence (λ − ε(λ))y = 0, as claimed. Therefore multiplication with a2 is injective on
RΛ/(a1)RΛ. Thus we have to show that multiplication with a3 is injective on RΛ/(a1, a2)RΛ

if and only if (2.1) is injective. By Lemma 2.2 the first condition is equivalent to the ex-
actness of the sequence

(RΛ)3 −→ (RΛ)3 −→ RΛ (2.2)

from K(a1, a2, a3;RΛ). Set M := ker(∂0) ⊆ R3 with ∂0 from K(a1, a2, a3;R). Since the ∂i
are Λ-homomorphisms, restriction to the invariants yields an exact sequence

0 −→MΛ −→ (RΛ)3 −→ RΛ.

By Lemma 2.2(a), M = im(∂1), so we obtain the commutative diagram

MΛ

�
��� @

@@R

(RΛ)3 - (RΛ)3 - RΛ.

Thus (2.2) is exact if and only if (RΛ)3 →MΛ is surjective. From the short exact sequence

0 −→ R
∂2−→ R3 −→M −→ 0

we obtain, using Lemma 1.5,

0 −→ RΛ −→ (RΛ)3 −→MΛ −→ H1(Λ, R) −→ H1(Λ, R3).

Therefore (RΛ)3 →MΛ is surjective if and only if the map H1(Λ, R)→ H1(Λ, R3) induced
by ∂2 is injective. But from the definition of ∂2, this is equivalent to the injectivity of the
map (2.1). Summing up, we have proved that a1, a2, a3 is RΛ-regular if and only if (2.1) is
injective.

Remark 2.4. There is also a version of Theorem 2.3 giving a criterion for the RΛ-exactness
of longer sequences, under a certain condition. It can be found in Kemper [10, Satz 1.9]
and states the following: Assume for a non-negative integer r that H i(Λ, R) = 0 for all i
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with 0 < i < r. Then an R-regular sequence a1, . . . , ar+2 ∈ RΛ is RΛ-regular if and only if
the map

Hr(Λ, R) −→ Hr(Λ, R)r+2

induced by multiplication with the ai is injective.
Theorem 2.3 is the version for r = 1 (in which case the hypothesis is vacuous). /

The following example illustrates a situation where the map (2.1) is not injective.

Example 2.5. Let {0} 6= G ≤ K+ be a subgroup of the additive group of K. We write
elements of G as σc, c ∈ K. G acts on the polynomial ring R := K[x1, x2, x3, y1, y2, y3] by

σc(xi) = xi and σc(yi) = yi + cxi.

This makes R into an algebra over Λ := KG. The homomorphism

ϕ: G→ K+, σc 7→ c

defines a non-zero element of H1(G,K). K occurs as the polynomials of degree 0 in R and
is hence a direct summand. Therefore ϕ defines a non-zero element α ∈ H1(G,R) via the
embedding H1(G,K) ↪→ H1(G,R). The sequence x1, x2, x3 ∈ RG is clearly R-regular, but
we have

xiϕ(σc) = cxi = (σc − 1)yi,

which is a coboundary. Hence xiα = 0, so the map (2.1) is not injective, and x1, x2, x3 is
not RG-regular. /

In fact it is very common (to say the least) that elements in H i(Λ, R) are torsion
elements. To illustrate this, consider the case Λ = KG with G a finite group, and let
the Λ-algebra R be a domain. Then H i(G,Quot(R)) = 0 for i > 0 by (the additive
version of) Hilbert’s Theorem 90. Thus every element in H i(G,R) is torsion. However,
this consideration does not provide sufficient information to decide if a non-zero element
in H1(G,R) exists whose annihilator in RG contains an R-regular sequence of length 3.

The main goal of this paper is to study the Cohen-Macaulay property of invariant rings,
which we define now.

Definition 2.6. Let R be an algebra over a field K.

(a) A sequence a1, . . . , ak ∈ R is called a partial system of parameters if (a1, . . . , ak)R
6= R and ht ((a1, . . . , ak)R) = k. Recall that the height of an ideal I is the mini-
mal height of the prime ideals containing I. By Krull’s principal ideal theorem (see
Eisenbud [4, Theorem 10.2]), we have ht ((a1, . . . , ak)R) ≤ k for any a1, . . . , ak ∈ R
satisfying (a1, . . . , ak)R 6= R.

(b) R is called Cohen-Macaulay if it is noetherian and every partial system of param-
eters is an R-regular sequence.

Remark 2.7. (a) It can be shown that any R-regular sequence is a partial system of
parameters (this follows from Eisenbud [4, Theorem 3.1(b)]).

(b) If R has finite Krull dimension n, then n is the maximal length of a partial system
of parameters, and a partial system of parameters of this length is called a system
of parameters.
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(c) In Definition 2.6 we gave an alternative definition of Cohen-Macaulayness. The
“official” one is as follows: R is called Cohen-Macaulay if for every prime ideal
P ∈ Spec(R) there exists an RP -regular sequence in PP (the maximal ideal of the
local ring RP ) of length equal to the Krull dimension dim(RP ).

(d) If R is a graded algebra and K = R0 is the homogeneous part of degree 0, then R
is Cohen-Macaulay if and only if for some (and then for every) homogeneous system
of parameters f1, . . . , fn, R is a free module over the subalgebra K[f1, . . . , fn]. We
also remark that for any homogeneous system of parameters R is a finitely generated
module over K[f1, . . . , fn] (independently of the Cohen-Macaulay property). This
characterization shows what a nice property Cohen-Macaulayness is. In the sequel
we shall focus on graded algebras. /

Example 2.8. (a) A polynomial ring K[x1, . . . , xn] is Cohen-Macaulay. This can be seen,
for example, by using Remark 2.7(d).

(b) If |G| < ∞ in Example 2.5, then RG is not Cohen-Macaulay. Indeed, R is integral
over RG is this case, and we see from Eisenbud [4, Proposition 9.2] that

ht
(
(x1, x2, x3)RG

)
= ht ((x1, x2, x3)R) = 3.

Hence x1, x2, x3 is a partial system of parameters for RG, but not RG-regular. /

If V is a module over a cocommutative Hopf algebra Λ, then the symmetric algebra
S(V ) is a Λ-module. (We need cocommutativity so that the ideal factored out from the
tensor algebra to form S(V ) is a Λ-submodule.) In the case where Λ is the group ring
of a linearly reductive group, the celebrated theorem of Hochster and Roberts says the
following.

Theorem 2.9 (Hochster and Roberts [8]). Let G be a linearly reductive algebraic group
over an algebraically closed field K and V a G-module (i.e., a KG-module such that the
action G→ GL(V ) is a morphism of algebraic groups). Then S(V )G is Cohen-Macaulay.

The main goal of this paper is to study, in the more general setting of Hopf algebras,
to what extent a converse of Theorem 2.9 holds. In order to do so, we must generalize the
concept of a linearly reductive group. Here we face the difficulty that linear reductivity is
restricted to G-modules, which form a subcategory of all KG-modules. We address this
difficulty by allowing subcategories of the module category with certain properties.

Definition 2.10. Let Λ be a cocommutative Hopf algebra with antipode.

(a) A full subcategory C of the module category MOD(Λ) of Λ is called admissible if
the following properties hold:

(i) All objects of C have finite K-dimension.

(ii) K is an object of C.

(iii) If V is an object of C, then so are all symmetric powers Si(V ) and all submodules
U ≤ V .
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(iv) If U and V are objects of C, then so are U ⊕ V and HomK(U, V ).

(b) If C is an admissible subcategory ofMOD(Λ), then Λ is called C-linearly reductive
if every short exact sequence of modules from C splits.

(c) If C is an admissible subcategory of MOD(Λ), then Λ is called C-geometrically
reductive if for every module V from C and for every 0 6= v ∈ V Λ there exist an
r > 0 and an f ∈ Sr(V ∗)Λ such that f(v) 6= 0.

Examples of admissible subcategories of MOD(Λ) are the category of all finite dimen-
sional Λ-modules, or the category of all G-modules if Λ = KG with G an algebraic group
over an algebraically closed field K. In the latter case, Λ is C-linearly or C-geometrically
reductive if and only if G is linearly or geometrically reductive, respectively. We will see
in Proposition 3.1 that linear reductivity implies geometric reductivity. The main goal of
this paper is to prove the following theorem.

Theorem 2.11 (Main Theorem). Let Λ be a cocommutative Hopf algebra with antipode
and C an admissible subcategory of MOD(Λ) such that Λ is C-geometrically reductive.
Then the following two statements are equivalent:

(a) Λ is C-linearly reductive.

(b) For every object V of C, the invariant ring S(V )Λ is Cohen-Macaulay.

A corollary of Theorem 2.11 is that if G is a finite group and K a field whose charac-
teristic divides |G|, then there exists a finite dimensional KG-module V such that S(V )G

is not Cohen-Macaulay. To interpret Theorem 2.11 for other examples of cocommutative
Hopf algebras with antipodes requires an analysis of the different notions of reductivity for
these Hopf algebras.

The proof of the implication “(a)⇒ (b)” is a straight forward generalization of Hochster
and Roberts’s arguments (or, more precisely, the proof due to F. Knop given in Bruns and
Herzog [3, Section 6.5]). The proof of the converse implication “(b) ⇒ (a)” breaks down
into a number of steps, as follows:

(1) If Λ is not C-linearly reductive, we find an object U of C such that H1(Λ, U) 6= 0.

(2) For α ∈ H1(Λ, U), we construct a module W from C such that W has a non-zero
invariant 0 6= w ∈ WΛ with w ⊗ α = 0 in H1(Λ,W ⊗ U). In other words, we hire a
killer for α.

(3) Then we build the Λ-module

V := W ⊕W ⊕W ⊕ U.

Using Theorem 2.3, we conclude that the three copies w1, w2, w3 of w in V form a
sequence in S(V )Λ which is not S(V )Λ-regular.

(4) Using the hypothesis that Λ is C-geometrically reductive, we show that w1, w2, w3 is
a partial system of parameters for S(V )Λ. Thus S(V )Λ is not Cohen-Macaulay.
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3 The proof of the Main Theorem

In this section Λ is always a cocommutative Hopf algebra with antipode, and C is an
admissible subcategory of MOD(Λ). We will first prove the implication “(a) ⇒ (b)” and
then embark on the proof of the converse. First of all, however, we show that linear
reductivity implies geometric reductivity.

Proposition 3.1. If Λ is C-linearly reductive, it is also C-geometrically reductive.

Proof. Let V be a Λ-module from C and 0 6= v ∈ V Λ. Using the rule ε◦η = ε (Sweedler [22,
Proposition 4.0.1(3)]), it is routine to check that the map ϕ: V ∗ → K, f 7→ f(v) is a
Λ-homomorphism. It follows that if U ≤ V ∗ is an irreducible submodule with ϕ(U) 6= 0,
then U ∼= K. By the linear reductivity, V ∗ is decomposable into irreducible Λ-submodules,
and therefore ϕ(V ∗) = ϕ

(
(V ∗)Λ

)
. But v 6= 0 implies ϕ 6= 0, hence there exists f ∈ (V ∗)Λ

with f(v) = ϕ(f) 6= 0.

We now prove that for linearly reductive Hopf algebras there exists a so-called Reynolds
operator.

Proposition 3.2. Assume that Λ is C-linearly reductive and that V is a Λ-module from
C. Then with R := S(V ) there exists a Λ-homomorphism π: R→ RΛ with π|RΛ = id. Any
such π is also a homomorphism of RΛ-modules. It is called a Reynolds operator.

Proof. For each i the embedding Si(V )Λ ↪→ Si(V ) splits by the linear reductivity. This
yields Λ-homomorphisms πi which we put together to obtain π. Now fix an a ∈ RΛ and
consider the Λ-endomorphism

ϕ: R→ R, f 7→ π(af).

If U ≤ R is an irreducible submodule with ϕ(U) 6= 0, then U ∼= K. Take f ∈ Si(V ) and set
f ′ := f − π(f). Since Si(V ) is decomposable into a direct sum of irreducible submodules,
we conclude that ϕ(f ′) = 0. Therefore

π(af) = ϕ(π(f) + f ′) = ϕ(π(f)) = π(aπ(f)) = aπ(f).

Now the second claim follows.

Lemma 3.3. In the situation of Proposition 3.2, let I ⊆ RΛ be an ideal and let IR be the
ideal generated by I in R. Then

IR ∩RΛ = I.

Proof. The inclusion I ⊆ IR∩RΛ is clear. Conversely, take f = a1b1 + · · ·+arbr ∈ IR∩RΛ

with ai ∈ R and bi ∈ I. Applying the Reynolds operator, we obtain

f = π(f) = π(a1)b1 + · · ·+ π(ar)br ∈ I.

We can now use Theorem 6.5.2 from Bruns and Herzog [3] to generalize Theorem 2.9.
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Theorem 3.4. Suppose that Λ is C-linearly reductive and V is a Λ-module from C. Then
S(V )Λ is Cohen-Macaulay.

Proof. We first remark that S(V )Λ is a graded K-algebra. Hence Hilbert’s classical proof
of the finite generation of invariant rings (see, for example, the proof of Theorem 2.1.3 in
Sturmfels [21]) is applicable. Thus S(V )Λ is finitely generated and therefore noetherian.
Now the claim follows from Bruns and Herzog [3, Theorem 6.5.2], where the essential
hypothesis is provided by Lemma 3.3.

We are now going to take the first step in proving the implication “(b) ⇒ (a)” from
Theorem 2.11. Fix a Λ-module V from C. A short exact sequence

0 −→ V −→W −→ K −→ 0 (3.1)

with W an object of C gives rise to the exact sequence

0 −→ V Λ −→WΛ −→ K
δ−→ H1(Λ, V ).

We see that (3.1) splits if and only if δ(1) = 0. Denote by H1
C(Λ, V ) the subset of H1(Λ, V )

consisting of all δ(1) which are obtained from exact sequences (3.1) with W objects of C.

Proposition 3.5. Λ is C-linear reductive if and only if H1
C(Λ, V ) = 0 for all Λ-modules V

from C.

Proof. If Λ is C-linear reductive, every short exact sequence of the type (3.1) splits, hence
H1
C(Λ, V ) = 0.

Conversely, assume that H1
C(Λ, V ) = 0, so that every sequence (3.1) splits. We first

claim that an epimorphism U → V of Λ-modules from C restricts to an epimorphism
UΛ → V Λ. Indeed, take any invariant 0 6= v ∈ V Λ, and let U ′ ⊆ U be the preimage of
Kv. Since Kv is a submodule of V , U ′ is also a submodule of U . By the hypothesis, the
epimorphism U ′ → Kv splits. Thus v has a preimage in (U ′)Λ ⊆ UΛ, which proves the
claim.

Now let
0 −→ V −→W −→ U −→ 0 (3.2)

be any short exact sequence with objects of C. This leads to an exact sequence

0 −→ HomK(U, V ) −→ HomK(W,V ) −→ HomK(V, V ) −→ 0.

We have idV ∈ HomΛ(V, V ) = HomK(V, V )Λ by Lemma 1.4. By the above, idV has a
preimage ϕ ∈ HomK(W,V )Λ = HomΛ(W,V ), again using Lemma 1.4. This ϕ yields the
desired splitting of the sequence (3.2).

I owe the idea of the current version of the preceding proof to Hanspeter Kraft. We now
address the second step in the proof, the construction of a module W with an invariant
vector 0 6= w ∈ WΛ which kills a given α ∈ H1(Λ, V ). The homomorphism V → W ⊗ V ,
v 7→ w ⊗ v induces a map H1(Λ, V ) → H1(Λ,W ⊗ V ). We denote the image of α under
this map by w ⊗ α.

Proposition 3.6. Let V be a Λ-module from C and α ∈ H1
C(Λ, V ). Then there exists a

Λ-module W from C and a non-zero invariant 0 6= w ∈WΛ such that w ⊗ α = 0.
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Proof. We start by considering any Λ-module W with a non-zero invariant 0 6= w ∈ WΛ

and derive conditions on W which are equivalent to w ⊗ α = 0. In order to find a short
exact sequence to which w ⊗ α is associated, we have to look at the connection between
short exact sequences and first cohomology in more detail. Indeed, α arises from an exact
sequence

0 −→ V −→ Ṽ
π−→ K −→ 0

with Ṽ a module from C. In explicit terms, this means that α is given by the homomorphism
ψ1 in the commutative diagram

· · · - P1
∂1- P0

∂0- K - 0

?

ψ1

?

ψ0

?

||

0 - V - Ṽ
π- K - 0,

where the upper row is a projective resolution and the homomorphisms ψi owe their ex-
istence to projectivity. We have a Λ-homomorphism ϕ: K → W, c 7→ cw. Taking the
pullback

M := (W ⊗ Ṽ )×W K := {(a, c) ∈ (Ṽ ⊗W )⊕K | (idW ⊗π)(a) = ϕ(c)},

we obtain a commutative diagram

0 -W ⊗ V - M - K - 0

?

||

? ?

ϕ

0 -W ⊗ V -W ⊗ Ṽ idW ⊗π- W - 0

with exact rows. We claim that w ⊗ α is the element of H1(Λ,W ⊗ V ) associated to the
upper row. Indeed, it is easily checked that the homomorphisms

ψ′0: P0 →M, x 7→ (w ⊗ ψ0(x), ∂0(x)) and
ψ′1: P1 →W ⊗ V, x 7→ w ⊗ ψ0(∂1(x)) = w ⊗ ψ1(x)

make the diagram

· · · - P1
∂1- P0

∂0- K - 0

?

ψ′1

?

ψ′0

?

||

0 -W ⊗ V -M - K - 0

commute. So we have seen that the sequence 0 → W ⊗ V → M → K → 0 splits if and
only if w ⊗ α = 0. By the definition of M , the sequence splits if and only if there exists a
Λ-homomorphism K →W ⊗ Ṽ such that
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K

�
�
�	 ?

ϕ

W ⊗ Ṽ idW ⊗π- W

commutes. The natural isomorphism W ⊗ Ṽ ∼−→ HomK(Ṽ ∗,W ) and the homomorphism
HomK(Ṽ ∗,W )→W , f 7→ f(π) make the diagram

W ⊗ Ṽ idW ⊗π- W

@
@
@R

∼=

6

HomK(Ṽ ∗,W )

commute. Using this, we conclude that w ⊗ α = 0 if and only if there exists a Λ-
homomorphism K →W such that

K

�
�
�	 ?

ϕ

HomK(Ṽ ∗,W )- W

commutes. This is equivalent to the existence of f ∈ HomK(Ṽ ∗,W )Λ = HomΛ(Ṽ ∗,W ) (by
Lemma 1.4) such that f(π) = w. Thus W has a 0 6= w ∈WΛ with w⊗α = 0 if and only if
there exists a Λ-homomorphism f : Ṽ ∗ →W with f(π) 6= 0. Hence we can choose W = Ṽ ∗

(which is an object of C) and f = id.

Suppose that Λ is not C-linearly reductive. Putting things together as suggested at
the end of Section 2, we obtain a Λ-module V from C and an S(V )-regular sequence
w1, w2, w3 ∈ S(V )Λ such that every wi annihilates a non-zero α ∈ H1(Λ, S(V )), which
exists by Proposition 3.5. Therefore w1, w2, w3 is not S(V )Λ-regular by Theorem 2.3. The
proof of Theorem 2.11 is complete if we can show that w1, w2, w3 is a partial system of
parameters for S(V )Λ. For this we will need the hypothesis that Λ be C-geometrically
reductive.

Lemma 3.7. Let ϕ: A→ B be an epimorphism of Λ-algebras which need not have a unit.
Assume that every a ∈ A lies in a Λ-submodule of A which is an object of C, and that Λ
is C-geometrically reductive. Then for every b ∈ BΛ there exists an a ∈ AΛ and an r > 0
such that ϕ(a) = br.

Proof. We follow the proof given by Mumford et al. [14, Lemma A.1.2] of the analogous
result for geometrically reductive groups. We can assume that b 6= 0. Choose an a′ ∈ A
with ϕ(a′) = b, and a submodule E ⊆ A from C containing a′. Since b is an invariant, we
obtain for λ ∈ Λ:

λa′ ∈ ε(λ)a′ + (E ∩ ker(ϕ)).
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Hence V := Ka′ ⊕ (E ∩ ker(ϕ)) ⊆ E is also a submodule from C. There exists an f ∈ V ∗
with f(a′) = 1 and f |E∩ker(ϕ) = 0. For λ ∈ Λ with ∆(λ) =

∑
i µi ⊗ νi, α ∈ K and

v ∈ E ∩ ker(ϕ) we have

(λf)(αa′ + v) =
∑
i

µi · f
(
η(νi) · (αa′ + v)

)
=

=
∑
i

ε(µi) · f
(
ε(νi)αa′

)
= ε(λ)α = (ε(λ) · f)(αa′ + v),

so f lies in (V ∗)Λ. By the geometric reductivity there exist r > 0 and ã ∈ Sr(V ∗∗)Λ with
ã(f) = 1. Using (3), (4), and (6) from Sweedler [22, Proposition 4.0.1], we verify that
the canonical embedding V → V ∗∗ is a Λ-homomorphism. Since V is finite dimensional,
we can therefore assume ã ∈ Sr(V ). The inclusion V ⊆ A induces a Λ-homomorphism
ψ: Sr(V )→ A. The image of ψ is the direct sum of K · (a′)r with a K-vector space all of
whose elements are multiples of elements from E ∩ ker(ϕ). Thus we obtain

ϕ(ψ(ã)) = br,

so a := ψ(ã) satisfies ϕ(a) = br.

From this lemma we derive a “geometric” version of Lemma 3.3, which holds under the
hypothesis of geometric reductivity. For the case of a geometrically reductive group, this
result is well known (see Newstead [17, Lemma 3.4.2]).

Proposition 3.8. Assume that Λ is C-geometrically reductive. Let V be a Λ-module from
C, R = S(V ) the symmetric algebra, and I ⊆ RΛ an ideal. Then

√
IR ∩RΛ =

√
I.

Proof. The inclusion
√
I ⊆
√
IR∩RΛ is clear. For the converse inclusion it suffices to show

IR ∩RΛ ⊆
√
I.

Take f =
∑m

i=1 aifi ∈ IR ∩ RΛ with ai ∈ R, fi ∈ I. Consider the algebra A :=
R[t1, . . . , tm]+ of all polynomials in indeterminates t1, . . . , tm and coefficients in R with 0
as constant coefficient. A becomes a Λ-algebra (without unit) with trivial action on the ti.
Every element from A lies in a submodule from C. We have a homomorphism ϕ: A → R
of Λ-algebras given by ati 7→ afi for a ∈ R. If B is the image of this homomorphism, then
f ∈ BΛ. Moreover,

ϕ(AΛ) = ϕ(RΛ[t1, . . . , tm]+) ⊆ I.

Now by Lemma 3.7 there exists r > 0 such that f r ∈ I. This completes the proof.

Remark 3.9. Proposition 3.8 has important geometrical consequences. With the notation
of Proposition 3.8, consider the map

πΛ: X := Spec(R)→ X//Λ := Spec(RΛ)

obtained from intersecting a prime ideal from R with RΛ. This is the categorical quotient
of the Λ-action on R. Now Proposition 3.8 implies that πΛ is onto if Λ is C-geometrically
reductive. /
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We deduce the following lemma from Proposition 3.8, which will be used in the proof
of Theorem 2.11.

Lemma 3.10. Suppose that Λ is C-geometrically reductive and V is a Λ-module from C.
Then if v1, . . . , vk ∈ V Λ ⊂ S(V )Λ are linearly independent over K, they form a partial
system of parameters for S(V )Λ.

Proof. We write R = S(V ). Clearly I := (v1, . . . , vk)RΛ 6= RΛ. We have to show that
ht(I) ≥ k. The ideals Pi := (v1, . . . , vi)R ∩RΛ (0 ≤ i ≤ k) are prime ideals in RΛ forming
a strictly increasing sequence. Let P ⊆ RΛ be any prime ideal containing I. Then by
Proposition 3.8 we obtain

Pk =
√
Pk =

√
(v1, . . . , vk)R ∩RΛ =

√
IR ∩RΛ =

√
I ⊆
√
P = P.

Thus ht(P ) ≥ ht(Pk) ≥ k, which completes the proof.

Proof of Theorem 2.11. The implication “(a) ⇒ (b)” was shown in Theorem 3.4. Suppose
that Λ is not C-linearly reductive. By Theorem 3.5 there exists an object U of C such that
H1
C(Λ, U) 6= 0. Choose 0 6= α ∈ H1

C(Λ, U). By Proposition 3.6 there exists an object W of
C with an invariant 0 6= w ∈WΛ such that w ⊗ α = 0. Form the Λ-module

V := U ⊕W ⊕W ⊕W

and consider R = S(V ). By Lemma 3.10, the three copies w1, w2, w3 of w in V form a
partial system of parameters for RΛ. They also form an R-regular sequence. Since U is
a direct summand of R, we can view α as a non-zero element of H1(Λ, R). Applying the
map H1(Λ, R ⊗ R) → H1(Λ, R) induced by the multiplication, we find that wiα = 0 for
all i. Thus w1, w2, w3 is not RΛ-regular by Theorem 2.3. Therefore by Definition 2.6(b) R
is not Cohen-Macaulay. This completes the proof.

Remark 3.11. The way in which the hypothesis of geometric reductivity comes into the
proof of Theorem 2.11 may seem odd, and possibly unnecessary. However, the example
of the additive group Ga (of C, say) shows that this hypothesis is indispensable. Indeed,
for every Ga-module V we have that S(V )Ga is Cohen-Macaulay (see Kemper [10, An-
merkung 2.16] or [12, Remark 8] for details). Ga is the prototype of a non-geometrically
reductive group. /

4 Interpretations of the Main Theorem

In Example 1.2 we saw a few examples of cocommutative Hopf algebras with antipodes. In
order to reap some fruits from Theorem 2.11, we have to analyze the reductivity properties
for the various instances of Hopf algebras. Thus we can hope to obtain interesting theorems
on invariants of groups and of Lie algebras, and possibly other types of objects. Before
considering the various cases of Hopf algebras, we proof one general result.

Proposition 4.1. Let Λ be a finite dimensional Hopf algebra over a field K, and let C be
an admissible subcategory of MOD(Λ). Then Λ is C-geometrically reductive.
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Proof. Let V be an object of C and take 0 6= v ∈ V Λ. Then there exists an f ∈ V ∗ with
f(v) = 1. By Ferrer Santos [5, Theorem 4.2.1], the finite dimensionality of Λ implies that
R is integral over RΛ. Thus there exist a1, . . . , ar ∈ S(V ∗)Λ such that

f r + a1f
r−1 + · · ·+ ar−1f + ar = 0.

Without loss we can assume that ai ∈ Si(V ∗)Λ. Evaluating the above equation at v yields

1 + a1(v) + · · ·+ ar−1(v) + ar(v) = 0,

hence at least one of the ai(v) must be non-zero. This means that Λ is C-geometrically
reductive.

4.1 Algebraic groups

We consider the case where G is a linear algebraic group over an algebraically closed field
K and C is the subcategory of MOD(KG) consisting of the G-modules (i.e., the finite
dimensional KG-modules V such that the action G → GL(V ) is given by a morphism of
algebraic groups). Theorem 2.11 now yields:

Theorem 4.2 ([12, Theorem 7]). A geometrically reductive algebraic group G is linearly
reductive if and only if for all G-modules V the invariant ring S(V )G is Cohen-Macaulay.

Remark 4.3. Using the language of schemes, we can also consider a linear algebraic group
G over a non-algebraically closed field K. This poses a few difficulties, since the category
of G-modules is not a subcategory of the Λ-modules, with Λ the group ring of the group
G(K) of K-rational points of G. These difficulties can be circumvented by taking a detour
over the algebraic closure of K (see [10, Section 2.2]). The result is that Theorem 4.2 also
holds over non-algebraically closed fields. /

The following corollary is implicit in [11, Corollary 2.4].

Corollary 4.4. Let G be a finite group and K a field. Then S(V )G is Cohen-Macaulay
for all finite dimensional KG-modules V if and only if char(K) - |G|.

Proof. Let C be the category of all finite dimensional modules over Λ := KG. By Proposi-
tion 4.1, Λ is C-geometrically reductive. Moreover, Λ is C-linearly reductive if and only if
char(K) - |G|. Now the corollary follows from Theorem 2.11.

We consider the two notions of reductivity for linear algebraic groups. Concerning
geometric reductivity, it was shown by Haboush [6] that G is geometrically reductive if
and only if it is (group theoretically) reductive, i.e., the unipotent radical of G is triv-
ial. Therefore the classical groups are examples of geometrically reductive groups. If the
characteristic of K is 0, then G is reductive if and only if it is linearly reductive (see
Springer [20, V., Satz 1.1]). Therefore Theorem 4.2 is void in characteristic 0. The situ-
ation is remarkably different in positive characteristic. Here the linearly reductive groups
were classified by Nagata [15]. The result is that G is linearly reductive if and only if the
number of connected components of G is not divisible by char(K), and the 1-component
G0 is a torus. Thus the two concepts of reductivity fall very much apart in positive char-
acteristic, and Theorem 4.2 is far from void here. For example, we get the result that for
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the classical groups in positive characteristic there are modules whose invariant rings are
not Cohen-Macaulay.

Theorem 4.2 ties in nicely with results of Popov [18] and Nagata [16] to give the following
characterization of linearly reductive groups by their invariants.

Corollary 4.5 ([12, Corollary 9]). Let G be a linear algebraic group over an algebraically
closed field K. Then G is linearly reductive if and only if the following two conditions are
satisfied:

(a) If G acts on an affine K-variety X by a morphism G ×X → X, then the invariant
ring K[X]G (with K[X] the coordinate ring) is finitely generated, and

(b) for every G-module V the invariant ring S(V )G is Cohen-Macaulay.

Proof. Suppose that G is linearly reductive. Then (a) holds by the theorem of Hilbert
and Nagata (see [16]), and (b) follows from Theorem 2.9. Conversely, if (a) and (b) are
satisfied, then G is reductive by Popov [18]. Therefore Theorem 4.2 applies and yields that
G is linearly reductive.

4.2 Lie algebras and abelian group schemes

Let us call a Lie algebra g linearly or geometrically reductive if the universal enveloping
algebra Λ = U(g) is C-linearly or C-geometrically reductive, respectively, where C is the
category of all finite dimensional Λ-modules. An analysis of these properties yields:

Proposition 4.6. Let g be a finite dimensional Lie algebra over a field K.

(a) If the characteristic of K is zero, we have the equivalence

g is linearly reductive ⇔ g is geometrically reductive ⇔ g is semisimple.

(b) If K has positive characteristic, the g is geometrically reductive. Moreover, it is
linearly reductive if and only if g = 0.

Proof. We start with characteristic 0. If g is semisimple, it is linearly reductive by a theorem
of Hermann Weyl (see Bourbaki [2, Chap. I, § 6, Theorem 2]). Linear reductivity implies
geometric reductivity by Proposition 3.1. Hence we only have to show that geometric
reductivity implies semisimplicity. We will not give the proof here but instead refer the
reader to Kemper [10, Proposition 2.8].

Now we consider the case of positive characteristic. If g is not the zero-algebra, then
by Jacobson [9] there exists a representation which is not completely reducible, hence
g is not linearly reductive. Now let g be an arbitrary finite dimensional Lie algebra in
positive characteristic p, and V a finite dimensional g-module. By the definition of the
comultiplication (see Example 1.2(b)), it follows that g acts by derivations on S(V ∗).
Therefore fp ∈ S(V ∗)g for any f ∈ S(V ∗). This implies the geometric reductivity of
g.

It is quite surprising how different the behavior is whether we are in characteristic 0 or
in positive characteristic. In one case, both notions of reductivity coincide, and in the other,
they fall as far apart as they possibly can. From Proposition 4.6 we see that Theorem 2.11
does not yield any result for Lie algebras in characteristic 0. For positive characteristic, we
obtain the following result.
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Theorem 4.7. Let g 6= 0 be a finite dimensional Lie algebra over a field of positive charac-
teristic. Then there exists a finite dimensional g-module V such that S(V )g is not Cohen-
Macaulay.

We only report on the reductivity of commutative, cocommutative Hopf algebras with
antipodes, i.e., coordinate rings of abelian affine group schemes (see Example 1.2).

Proposition 4.8 ([10, Proposition 2.20]). Let Λ = K[G] be the coordinate ring of an
affine, smooth, abelian group scheme G of finite type (see Mumford et al. [14, Defini-
tion 0.2]), and let C be the category of all finite dimensional Λ-modules.

(a) Λ is C-linearly reductive if and only if dimK(Λ) <∞, i.e., G is zero-dimensional.

(b) If char(K) = 0, then Λ is C-geometrically reductive if and only if it is C-linearly
reductive.

(c) If K has positive characteristic, then Λ is C-geometrically reductive.

The proof makes essential use of the theorem of Lie-Kolchin. The proof of part (c) is
quite similar to the proof of (b) in Proposition 4.6. So again both concepts of reductivity
coincide in characteristic 0, and fall apart drastically in positive characteristic. Having
made this observation for all classes of cocommutative Hopf algebras with antipode that
we considered prompts the following conjecture.

Conjecture 4.9. Let Λ be a cocommutative Hopf algebra with antipode over a field of char-
acteristic 0 and C an admissible subcategory of MOD(Λ). Then Λ is C-linearly reductive
if and only if it is C-geometrically reductive.
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