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Introduction

In the fall of 1997 I gave a series of lectures at Queen’s University on algorithms in invariant
theory of finite groups. This article is an expanded version of the material presented there. The
main topic is the calculation of the invariant ring of a finite group acting on a polynomial ring by
linear transformations of the indeterminates. By “calculation” I mean finding a finite system of
generators for the invariant ring, and (optionally) determining structural properties of it. In this
exposition particular emphasis is placed on the case that the ground field has positive characteristic
dividing the group order. We call this the modular case, and it is important for several reasons.
First, many theoretical questions about the structure of modular invariant rings are still open. I
will address the problems which I consider the most important or fascinating in the course of the
paper. Thus it is very helpful to be able to compute modular invariant rings in order to gain
experience, formulate or check conjectures, and gather some insight which in fortunate cases leads
to proofs. Furthermore, the computation of modular invariant ring can be very useful for the study
of cohomology of finite groups (see Adem and Milgram [1]). This exposition also treats the non-
modular case (characteristic zero or coprime to the group order), where computations are much
easier and the theory is for the most part settled. There are also various applications in this case,
such as the solution of algebraic equations or the study of dynamical systems with symmetries (see,
for example, Gatermann [11], Worfolk [26]).

This is not a research paper, and so there is no claim of originality. In fact, most of the material
is covered by the papers [14,15,18]. The goal is to give a coherent exposition of what is scattered
through several original papers, which I hope is readable and assumes as little knowledge as possible.

There are several implementations of the algorithms treated in this text. The most efficient of
these is contained in the Magma system (see Kemper and Steel [18] and Bosma et al. [6]). There is
an older implementation in Maple written by myself, which can be obtained by anonymous ftp from
the site ftp.iwr.uni-heidelberg.de under /pub/kemper/INVAR2. A further implementation in
Singular has been written by Agnes Heydtmann (email agnes@math.uni-sb.de).

We will consider the following situation: K is a field, V is a finite dimensional vector space. Let
x1, . . . , xn be a basis of V . Then we write K[V ] for the polynomial ring K[x1, . . . , xn] over K with
the xi as indeterminates. More conceptually, K[V ] can be defined as the symmetric algebra of V :
K[V ] = S(V ). Let G ≤ GL(V ) be a linear group on V . The action on V can be extended to an
action of G on K[V ] by automorphisms of K-algebras. The invariant ring K[V ]G is the set of all
polynomials which are invariant under the action of G:

K[V ]G = {f ∈ K[V ] | σ(f) = f ∀σ ∈ G}.

It is immediately clear that K[V ]G is an algebra over K.
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Example. Let K = R, V = R
2 and consider the orthogonal group G = O2(R). Clearly f2 = x2

1 +x2
2

is an invariant. Now take any invariant f ∈ K[V ]G. Then f must be constant on all orbits under
G, i.e., under all circles about the origin. Hence f must be a function of the radius. This already
makes it very plausible that f can be written as a polynomial in f2, which is indeed the case for
any invariant f . Hence K[V ]G is generated by f2 as an algebra over K.

Now consider the group H ≤ G generated by the matrix(
0 1
−1 0

)
.

Clearly f2 is an invariant under H, too, and we find additional invariants

f4 = x2
1x

2
2 and g4 = x1x2(x2

1 − x2
2).

It turns out that in this example K[V ]H is generated by f2, f4, and g4. We will see in the sequel
how this can be seen.

In both examples finite generating systems of the invariant ring as a K-algebra were given. This
is and has always been a classical goal of invariant theory. The question whether a finite system
of generators always exists is known as Hilbert’s 14th problem. The general answer turns out to
be “no”, as was shown by Nagata’s counter example [19]. In fact, one has to assume that G is a
reductive group in order to get the invariant rings of all representations of G to be finitely generated.
This result was achieved by the combined effort of Hilbert [12], Nagata [20] and Popov [22]. In
particular, all finite groups are reductive, and it was Noether [21] who already in 1926 gave a non-
constructive proof that K[V ]G is finitely generated if G is a finite group. In the following we will
always restrict ourselves to the case of finite groups G. Our goal is to give algorithms to calculate a
finite system of generators. We will follow a two-step approach, which consists of the computation
of primary and secondary invariants. These are dealt with in Sections 2 and 3. Section 4 is devoted
to the calculation of several properties of invariant rings. But first we have to see how invariants
can be calculated at all.

1 Homogeneous components

The invariant ring K[V ]G is not finite dimensional as a vector space over K. But we have a natural
decomposition of K[V ]G into its homogeneous components, which are finite dimensional and thus
more accessible to computations: call a polynomial f ∈ K[V ] homogeneous of degree d if in all
monomials of f the sum of the exponents is d. Equivalently, f is homogeneous of degree d if it lies
in the d-th symmetric power Sd(V ) of V . The homogeneous polynomials of degree d form a vector
space which we denote by K[V ]d (= Sd(V )), and we have

K[V ] =
⊕
d≥0

K[V ]d.

The monomials of degree d are a basis of K[V ]d, hence dim(K[V ]d) =
(
n+d−1
n−1

)
, where n = dim(V ).

Now observe that the action of G preserves the homogeneous components. Hence we also get a
decomposition of the invariant ring

K[V ]G =
⊕
d≥0

K[V ]Gd

into its homogeneous components. This section is devoted to the calculation of a basis of K[V ]Gd
for a given d. This is the most basic task in computational invariant theory, and often the bottle
neck of the algorithms that are discussed later.
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1.1 The linear algebra method.

Let H ≤ G be a subgroup of G whose invariants of degree d are known (typically, the trivial group),
and take a set S(G/H) ⊆ G such that H together with S(G/H) generates G. Take the |S(G/H)|-
fold direct sum of K[V ], whose components are indexed by the elements of S(G/H), and consider
the map

K[V ]H →
⊕

σ∈S(G/H)

K[V ], f 7→ (σ(f)− f)σ∈S(G/H).

The kernel of this map is K[V ]G. Moreover, the map is K-linear (in fact it is a homomorphism of
modules over K[V ]G), and it preserves the grading. Restriction to the degree-d components yields
a linear map K[V ]Hd → K[V ]|S(G/H)|

d whose kernel is K[V ]Gd . This mapping is explicitly given,
so its kernel can be effectively calculated by solving a system of linear equations over K. In the
case H = 1, the number of unknowns in this system is

(
n+d−1
n−1

)
, and the number of equations is

|S(G/H)| ·
(
n+d−1
n−1

)
. This can become enormous for large values of n and d.

1.2 The Reynolds operator.

A further method to calculate the homogeneous component K[V ]Gd is by means of the Reynolds
operator, which is only available in the non-modular case. More generally, let H ≤ G be a subgroup
such that the index [G : H] is not divisible by the characteristic p of K. Then the relative Reynolds
operator is defined as

πGH : K[V ]H → K[V ]G, f 7→ 1
[G : H]

∑
σ∈G/H

σ(f),

where G/H denotes a set of left coset representatives of H in G. This is independent of the choice
of the coset representatives, and it is easily checked that πGH is a projection of modules over K[V ]G.
In particular, the images under πGH of a basis of K[V ]Hd generate the desired vector space K[V ]Gd .
It is again a problem of linear algebra to select a basis of K[V ]Gd from a generating set. In the non-
modular case there is a choice between using the Reynolds operator or the linear algebra method to
calculate homogeneous invariants. In Kemper and Steel [18], the authors analyzed the complexities
of both approaches. The general tendency is that the Reynolds operator performs better for small
|G| and large d.

2 Homogeneous systems of parameters

The first strategic goal in the calculation of an invariant ring is the construction of a homogeneous
system of parameters. This is best treated in the context of graded algebras. So suppose that R is
a finitely generated graded algebra over K, i.e., R is a finitely generated commutative associative
K-algebra with unity with a direct sum decomposition

R =
⊕
d≥0

Rd

such that Ri · Rj ⊆ Ri+j , and moreover R0 = K. As explained in the previous section, invariant
rings are graded algebras in this sense, and in fact the theory of graded algebras received much
of its impetus from the study of invariant rings. It probably goes without saying that a nonzero
element f ∈ Rd is called homogeneous of degree d, written as deg(f) = d. Moreover, we write
R+ = ⊕d>0Rd for the unique homogeneous maximal ideal of R. We will also consider graded
R-modules, i.e., modules M over R with a direct sum decomposition

M =
⊕
d≥N

Md
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with N ∈ Z such that RiMj ⊆ Mi+j . The following version of Nakayama’s lemma is of crucial
importance.

Lemma 2.1. Let R be a graded K-algebra and M a graded R-module. Then for a subset S ⊆ M
of homogeneous elements the following two conditions are equivalent:

(a) S generates M as an R-module.

(b) S generates M/R+M as a vector space over K. Here R+M is the submodule of M generated
by the elements a · g with a ∈ R+.

In particular, a generating set S for M is of minimal cardinality if no proper subset of S generates
M .

Proof. Clearly if S generates M , it also generates M/R+M as a K-vector space.
Now suppose that S generates M/R+M and let g ∈M be homogeneous of some degree d. Then

by assumption

g =
m∑
i=1

αigi +
r∑
j=1

ajhj

with g1, . . . , gm ∈ S, αi ∈ K, aj ∈ R+ and hj ∈ M . By multiplying out homogeneous parts
and omitting those summands which are not of degree d, we can assume that the aj and hj are
homogeneous with deg(ajhj) = d. Hence deg(hj) < d and hj lies in the submodule spanned by S
by induction on d, which works since {N,N + 1, N + 2, . . .} is a well-ordered set. Hence g lies in
the module spanned by S.

The last remark on minimality follows from the corresponding property of vector spaces.

We write dim(R) for the Krull dimension of R.

Definition 2.2. Let n = dim(R). A set {f1, . . . , fn} ⊆ R+ of homogeneous elements of positive
degree is called a homogeneous system of parameters if R is finitely generated as a module
over the subalgebra A = K[f1, . . . , fn] generated by the fi.

If R = K[V ]G is an invariant ring, the members of a homogeneous system of parameters are
also called primary invariants.

Note that dim(R) is the minimal number n such that f1, . . . , fn ∈ R can exist with the property
that R is a finitely generated K[f1, . . . , fn]-module, since this implies dim(R) = dim(K[f1, . . . , fn])
≤ n. (A finite extension of a ring has the same dimension, see Eisenbud [9, Proposition 9.2].) We
have equality if and only if f1, . . . , fn are algebraically independent over K. This shows that the
elements of a homogeneous system of parameters are always algebraically independent, so A =
K[f1, . . . , fn] is isomorphic to a polynomial ring. Using Lemma 2.1, we get the following geometric
characterization, which is the key to all methods to construct homogeneous systems of parameters.

Proposition 2.3. Let f1, . . . , fn ∈ R+ be homogeneous elements with n = dim(R). Then the
following statements are equivalent:

(a) {f1, . . . , fn} is a homogeneous system of parameters.

(b) dim(R/(f1, . . . , fn)) = 0.

(c) dim(R/(f1, . . . , fi)) = n− i for i = 1, . . . , n.

If R = K[V ]G is the invariant ring of a finite group, then the above statements are equivalent to

(d) VK̄(f1, . . . , fn) = {0}, where VK̄(f1, . . . , fn) is defined as {v ∈ K̄ ⊗K V | fi(v) = 0 for
i = 1, . . . , n} and K̄ is an algebraic closure of K.
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We will try to give a proof here which uses only some very basic facts from commutative algebra.
It is intertwined with the proof of the following:

Theorem 2.4 (Noether Normalization). If R is a finitely generated graded algebra, then a homo-
geneous system of parameters exists.

Proof of Proposition 2.3 and Theorem 2.4. By Lemma 2.1, {f1, . . . , fn} is a homogeneous system
of parameters if and only if the quotient algebra R′ := R/(f1, . . . , fn) has finite dimension as a
K-vector space. This is equivalent to the condition that R′d = 0 for d sufficiently large, or that R′+
is the radical ideal of the zero-ideal. This shows the equivalence of (a) and (b) in Proposition 2.3.

We prove Theorem 2.4 by induction on n = dim(R). If n = 0, then by the above the empty set
is a homogeneous system of parameters. Suppose that n > 0 and let P1, . . . , Pr be the associated
prime ideals of the zero-ideal with dim(R/Pi) = n. By the prime avoidance lemma (see Eisenbud [9,
Lemma 3.3]), there exists a homogeneous element f1 ∈ R+ with f1 /∈ Pi for all i, and it follows
dim(R/(f1)) < n. Now the theorem follows by induction.

Clearly the statement (c) from Proposition 2.3 is stronger than (b), so we must show that it is
also implied by (a) and (b). If fact, if {f1, . . . , fn} is a homogeneous system of parameters, then
Ri := R/(f1, . . . , fi) is finitely generated as a module over K[fi+1, . . . , fn] where the bars denote
the classes modulo (f1, . . . , fi), hence m := dimRi ≤ n− i by the remark after Definition 2.2. On
the other hand, by Theorem 2.4 there exists a homogeneous system of parameters {g1, . . . , gm} in
Ri, hence R is finitely generated over K[f1, . . . , fi, g1, . . . , gm] and therefore i + m ≥ n. With the
above we obtain dim(Ri) = n− i.

To prove the equivalence of (d), we first note that K[V ] is finitely generated as a module over
K[V ]G. In fact, f ∈ K[V ] is a zero of the monic polynomial∏

σ∈G
(X − σ(f)) ∈ K[V ]G[X].

It follows that {f1, . . . , fn} ⊂ K[V ]G+ is a homogeneous system of parameters for K[V ]G if and only if
it is a homogeneous system of parameters fro K[V ], which is equivalent to dim(K[V ]/(f1, . . . , fn)) =
0, or |VK̄(f1, . . . , fn)| <∞. The last condition is equivalent to (d), since if VK̄(f1, . . . , fn) contains
a nonzero point, it also contains the line joining this point and 0 by homogeneity.

We can see now that in the example from the Introduction the invariants f2 and f4 form a
homogeneous system of parameters. We note the following as a by-product of the above proof:

Proposition 2.5. The polynomial ring K[V ] is finitely generated as a module over K[V ]G. In
particular,

dim(K[V ]G) = dimK(V ).

2.1 Dade’s algorithm.

It is important to note that there are many choices of a homogeneous system of parameters. For
example, one can substitute any member of a homogeneous system of parameters by a power of
itself. As we will see in the next section, it is crucial for the efficiency of subsequent calculations
that a homogeneous system of parameters is chosen whose degrees are as small as possible. In
particular, one usually wants to minimize the product

∏n
i=1 deg(fi) (see Propositions 3.1 and 4.1).

An algorithm for the construction of a homogeneous system of parameters for K[V ]G was given by
Dade (see Stanley [25]). It is based on the following observation.

Proposition 2.6. Let n = dim(V ) and suppose that l1, . . . , ln ∈ V ∗ \{0} are linear forms such that

li /∈
⋃

σ1,...,σi−1∈G
〈σ1(l1), . . . , σi−1(li−1)〉K−vector space for i = 2, . . . , n.

Let fi be the product over all l in the G-orbit of li, then {f1, . . . , fn} is a homogeneous system of
parameters of K[V ]G.
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Proof. We show that condition (d) from Proposition 2.3 is satisfied. Take v ∈ VK̄(f1, . . . , fn). Then
(σi(li)) (v) = 0 for some σi ∈ G. But the assumption says that σ1(l1), . . . , σn(ln) forms a basis of
V ∗, hence v = 0.

It is clear how Proposition 2.6 can be turned into an algorithm, provided that the ground field
K is large enough to make the avoidance of a union of at most |G|n−1 proper subspaces possible.
This algorithm is simple and quick, but the main drawback is that it tends to produce invariants
whose degrees are of the same order of magnitude as |G|. For some experimental data on this see
Kemper [15]. In that paper, various other approaches for the calculation of a homogeneous system
of parameters are also explored, with the outcome that a computable criterion to decide whether
a given degree vector d1, . . . , dn gives the degrees of some homogeneous system of parameters is
required in order to obtain an algorithm which always produces an optimal homogeneous system of
parameters.

2.2 An algorithm for optimal homogeneous systems of parameters.

The following provides a criterion for the existence of a homogeneous systems of parameters of given
degrees.

Theorem 2.7 (Kemper [15]). Let R be a graded algebra of Krull dimension n over an infinite field
K and let d1, . . . , dk ∈ N = {1, 2, 3, . . .}. Then the following are equivalent:

(a) There exist homogeneous f1, . . . , fk ∈ R with deg(fi) = di such that

dim(R/(f1, . . . , fk)) = n− k.

(b) For each subset I ⊆ {1, . . . , k} the inequality

dim (R/(Rdi | i ∈ I)) ≤ n− |I|

holds. Here (Rdi | i ∈ I) denotes the ideal in R generated by the union of all homogeneous
components Rdi with i ∈ I.

The implication “(a) ⇒ (b)” also holds if K is a finite field.

Proof. First we prove that (a) implies (b). In fact, if dim(R/(f1, . . . , fk)) = n − k, then f1, . . . , fk
can be extended to a homogeneous system of parameters by Theorem 2.4 and Proposition 2.3,
hence Proposition 2.3(c) implies dim(R/(fi | i ∈ I)) = n− |I| for any I ⊆ {1, . . . , k}. But the ideal
(Rdi | i ∈ I) is bigger than (fi | i ∈ I), and the inequality in (b) follows.

Now we prove the converse by induction on k. For k = 0, (a) is clearly satisfied. Assume k > 0
and write dR(I) = dim (R/(Rdi | i ∈ I)) for I ⊆ {1, . . . , k}. Also write Assmin(I) for the set of all
associated prime ideals P ⊆ R of (Rdi | i ∈ I) with dim(R/P ) = n − |I|. Then Assmin(I) is a
(possibly empty) finite set. For I ⊆ {1, . . . , k − 1} and P ∈ Assmin(I) we have Rdk 6⊆ P , since
otherwise (Rdi | i ∈ I ∪ {k}) ⊆ P , so

dR(I ∪ {k}) ≥ dim(R/P ) = n− |I| > n− |I ∪ {k}|

in contradiction to (b). Therefore Rdk ∩ P is a proper subspace of Rdk . Hence by the infinity of K
there exists fk ∈ Rdk such that for all I ⊆ {1, . . . , k − 1} and all P ∈ Assmin(I) we have fk /∈ P .
With R′ := R/(fk), this implies that dR′(I) ≤ n − |I| − 1. In particular, dim(R′) = n − 1 (take
I = ∅ and observe that fk can be extended to a homogeneous system of parameters), hence the
conditions in (b) hold for R′ and k′ = k − 1 and the proof is complete by induction.



Computational Invariant Theory 7

The purpose of Theorem 2.7 was to obtain an effective criterion for d1, . . . , dn to appear as the
degrees of a homogeneous system of parameters, so now we explain how the conditions from (b) can
be checked algorithmically in the case that R = K[V ]G. First, the ideals (K[V ]Gdi | i ∈ I) ⊆ K[V ]G

for I ⊆ {1, . . . , n} can be calculated since K-bases for the subspaces K[V ]Gdi can be obtained
by the methods of Section 1. Moreover, Proposition 2.5 implies that the dimension of an ideal
I ⊆ K[V ]G equals the dimension of the ideal (I) ⊆ K[V ] generated by I in K[V ]. So we need an
algorithm to compute dimensions of ideals I ⊂ K[V ] = K[x1, . . . , xn] in a polynomial ring. Such
an algorithm is provided by Gröbner bases. Indeed, let B be a Gröbner basis of I with respect to
any term order which refines the order given by the total degree. Then Becker and Weispfenning [4,
Lemma 9.23 and Theorem 9.27] give a simple combinatorial procedure to calculate the dimension
of K[x1, . . . , xn]/I: it is the maximal cardinality of a subset I ⊆ {x1, . . . , xn} such that every lead
monomial of a polynomial from B involves a variable xi which is not in I.

We obtain the following rough idea of an algorithm for the construction of a optimal homogeneous
system of parameters.

(1) Loop through all degree vectors (d1, . . . , dn) ∈ Nn, ordered by rising values of
∏n
i=1 di, until

one is found which satisfies the conditions in (b) of Theorem 2.7.

(2) Loop through all f1 ∈ Rd1 until f1 is found such that (d2, . . . , dn) satisfies the conditions
in (b) of Theorem 2.7, with R replaced by R/(f1).

(3) By recursion, obtain f2, . . . , fn of degrees d2, . . . , dn such that f1, . . . , fn is the desired homo-
geneous system of parameters.

(4) If the loop through Rdi fails at some level in the recursion (which by Theorem 2.7 can only
happen if K is finite), go back into the loop (1) and choose a new degree vector (d1, . . . , dn).

To make the algorithm more precise, one has to specify a procedure to enumerate the (possibly
infinite) vector space Rdi in such a way that for a nonzero polynomial f on Rdi a vector is found
after finitely many steps where f takes a nonzero value. For details, we refer to [15] and remark here
that this is not a problem either in theoretical or in practical terms. While it is clear that the above
algorithm terminates and produces a homogeneous system of parameters with a minimal degree
product, it still appears quite appalling, since it involves up to 2n Gröbner basis computations for
the tests of the conditions from (b) of Theorem 2.7 for each degree vector, and a further minimum
of 2n Gröbner basis computations for the recursive construction of the fi.

However, with a few modifications the algorithm becomes quite feasible. Most importantly, some
strong and easily testable restrictions are applied on degree vectors before they are passed to the
recursive loops. I will discuss such restrictions below (Section 2.3). Furthermore, in the recursive
loops as few of the conditions from (b) of Theorem 2.7 as possible are applied. Thus a refined
algorithm is obtained which is given in detail in [15]. I sometimes compare this refined algorithm
to an assembly line which produces a package containing polynomials which eventually will become
a homogeneous system of parameters. There are n workers and a foreman, and at the start the
foreman chooses a degree vector (d1, . . . , dn) which satisfies the applicable restrictions. He hands a
barrel containing the elements of Rdi to the i-th worker, and the assembly starts with each worker
tossing a random element fi from his barrel into the package and shoving it down the line. Only the
last worker performs the appropriate dimension test, and if it fails, he pushes the package back to
his predecessor. Then each worker applies just enough conditions from (b) of Theorem 2.7 to find
out whether the failure was his fault (i.e., the package could have traveled further down the line
with a better choice of fi), and in that case puts in a better fi. Otherwise, he pushes the package
back up. If the package travels back to the first worker and he decides that the failure was not due
to him (namely, some condition from (b) of Theorem 2.7 on the degrees (d1, . . . , dn) was false), then
the foreman has to choose new degrees di.
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The justification for such an approach is that the subset of Rd1 × · · · × Rdn consisting of those
(f1, . . . , fn) which form a homogeneous system of parameters is Zariski-open, and that the restric-
tions on (d1, . . . , dn) yield a good chance that it is non-empty. Therefore the refined algorithm
probabilistically only requires one Gröbner basis computation. The refined algorithm is imple-
mented in Magma, and experience shows that it works quite well.

2.3 Hilbert series and restrictions on degree vectors.

Since R is assumed to be a finitely generated graded algebra, the K-dimension of each homogeneous
component Rd is finite. The Hilbert series of R is the formal power series

H(R, t) =
∑
d≥0

dimK(Rd) · td ∈ C[[t]].

Let f1, . . . , fn be a homogeneous system of parameters of degrees d1, . . . , dn. We can calculate the
Hilbert series of A = K[f1, . . . , fn] by using the fact that A is isomorphic to a polynomial ring, in
other words, A ∼= K[f1]⊗K · · · ⊗K K[fn], and the fact that the Hilbert series is multiplicative with
respect to tensor products. The result is

H(A, t) =
1

(1− td1) · · · (1− tdn)
. (2.1)

By looking at a free resolution of R as a module over A (see Section 4.3), we conclude that the
Hilbert series of R can then be written as

H(R, t) =
f(t)

(1− td1) · · · (1− tdn)
with f(t) ∈ Z[t]. (2.2)

Multiplying this by (1− t)n and substituting t = 1 yields the value f(1)/(d1 · · · dn), hence H(R, t)
has a pole at t = 1 of order at most n. Therefore we have a Laurent expansion

H(R, t) =
a0

(1− t)n
+

a1

(1− t)n−1
+ . . .

about t = 1, with a0 = f(1)/(d1 · · · dn). Since H(R, t) is coefficient-wise bounded from below by
H(A, t) =

∏n
i=1(1− tdi)−1, the coefficient a0 must be nonzero. It is often called the degree of R,

and written as deg(R) = a0. Since f(1) is an integer, we have seen that the product d1 · · · dn is a
multiple of 1/deg(R). The degree of R is often known even if the Hilbert series is not. In the case
that R is the invariant ring K[V ]G, we have deg(K[V ]G) = 1/|G| by Smith [24, Theorem 5.5.3].
We have obtained:

Proposition 2.8. If d1, . . . , dn are the degrees of a homogeneous system of parameters of K[V ]G,
then the product d1 · · · dn is divisible by |G|.

This poses a restriction on the degrees d1, . . . , dn which is always applicable. A stronger restric-
tion is obtained by using Equation (2.2) directly in cases where the Hilbert series is known. Indeed,
picking the smallest di such that H(R, t) ·

∏n
i=1(1 − tdi) is a polynomial with integral coefficients

often yields the actual degrees of a homogeneous system of parameters. In the non-modular case,
one even knows that the coefficients of f(t) are non-negative (see Equation (3.1) on page 10). Now
if R = K[V ]G and the characteristic of K is zero, then the Hilbert series can be calculated without
touching a single invariant by Molien’s marvelous formula

H(K[V ]G, t) =
1
|G|

∑
σ∈G

1
det(1− tσ)

. (2.3)

Observe that this formula is even nicer than it looks at a first glance, since the expression det(1−tσ)
only depends on the conjugacy class of σ in G (even in GL(V )). In fact, Molien’s formula can be
evaluated from the knowledge of the character of the representation and the power maps of G alone.
It is now time to look at an example.
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Example 2.9.

(a) We consider the permutation group G of order 4 generated by (1, 2)(3, 4) and (1, 4)(2, 3) and
its invariants over K = Q. Molien’s formula yields

H(K[V ]G, t) =
1
4

(
1

(1− t)4
+

3
(1− t2)2

)
=

t2 − t+ 1
(1− t)2(1− t2)2

=
1 + t3

(1− t)(1− t2)3
,

so (1, 2, 2, 2) is the smallest possible degree vector for primary invariants. Indeed, we find

f1 = x1 + x2 + x3 + x4, f2 = (x1 − x2 + x3 − x4)2,

f3 = (x1 − x2 − x3 + x4)2, f4 = (x1 + x2 − x3 − x4)2.

(b) Now take the abelian group G of order 8 generated by the matrices1
1

i

 and

−1
−1

1

 ∈ GL3(C).

This is an example of Stanley (see Sloane [23]). Molien’s formula yields

H(K[V ]G, t) =
1

(1− t2)3
,

so the degree vector (d1, d2, d3) = (2, 2, 2) meets the above restrictions and is minimal with
that property. But K[V ]G2 is generated by x2

1, x1x2 and x2
2, so we obtain the Krull dimen-

sion dim(K[V ]G/(K[V ]G2 )) = 1. But the condition in Theorem 2.7(b) for I = {1, 2, 3} is
dim(K[V ]G/(K[V ]G2 )) ≤ 3−|I| = 0, hence there are no primary invariants of degrees (2, 2, 2).
The degree vector with the second-lowest product is (d1, d2, d3) = (2, 2, 4), and here the algo-
rithm readily finds primary invariants

f1 = x2
1, f2 = x2

2, f3 = x4
3.

As we have seen here and will see in the sequel, the knowledge of the Hilbert series is extremely
helpful, so we ask for generalizations of Molien’s formula. In the non-modular case (char(K) does
not divide |G|), Molien’s formula still holds, but we have to form the determinants in Equation (2.3)
by Brauer-lifting the eigenvalues of σ ∈ G to complex roots of unity. Moreover, if G acts as a permu-
tation group on a basis of V , we can use Molien’s formula by “pretending” that the representation
is in characteristic 0. A common generalization is the case where V is a trivial source module. For
details, we refer to Kemper [17]. In that paper, the so-called extended Hilbert series H̃(K[V ], G, t)
is also discussed. This is the formal power series whose coefficients are not the dimensions of K[V ]Gd
but the multiplicities of the trivial module K as a composition factor of K[V ]d. It is shown how
H̃(K[V ], G, t) can be calculated from the knowledge of the Brauer character table of G, and that
Equation (2.2) holds for H̃(K[V ], G, t) as well. Thus we get a similar restriction on the degrees of
primary invariants in the modular case as well.

A further restriction which does not originate from the Hilbert series and is applicable in the
general case of a finitely generated graded algebra R is the following. Suppose that d1, . . . , dn are
the degrees of a homogeneous system of parameters f1, . . . , fn, with d1 ≤ . . . ≤ dn. For d ∈ N let
Jd be the ideal in R generated by all components Ri with 1 ≤ i ≤ d. Then

dim(R/Jdi) ≤ dim(R/(f1, . . . , fi)) = n− i,

hence
di ≥ min{d | dim(R/Jd) ≤ n− i}. (2.4)

This provides lower bounds for the degrees di, which in many cases turn out to be sharp. We will
look at an example in Section 5.
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3 Secondary invariants

In this section we assume that primary invariants f1, . . . , fn ∈ K[V ]G have been constructed, so
K[V ]G is generated by homogeneous invariants g1, . . . , gm as a module over A = K[f1, . . . , fn].
Such generators gi will be called secondary invariants. Together with the primary invariants,
the gi generate K[V ]G as an algebra over K. It should be emphasized that neither primary nor
secondary invariants are uniquely determined, and that being a primary or a secondary invariant is
not an intrinsic property of an invariant. These notions merely describe the role of some invariants
in a special choice of a generating system. This section is devoted to the task of finding secondary
invariants. Looking for homogeneous generators of K[V ]G as a module over A is equivalent to
looking for generators of K[V ]G/A+K[V ]G as a vector space over K (Lemma 2.1). It follows that
a system of secondary invariants which is minimal in the sense that no generator can be omitted is
also minimal in the sense that it has minimal cardinality, and moreover the degrees of such a system
is uniquely determined. We have entirely different algorithms for the modular and non-modular
case.

3.1 The non-modular case

We assume that the characteristic of K is not a divisor of the group order |G|. As we shall see,
this has several beneficial effects on the efficiency of our algorithms. First, the invariant ring is
always Cohen-Macaulay, i.e., it is free as a module over A = K[f1, . . . , fn] (see Hochster and
Eagon [13]). This property is independent of the choice of the homogeneous system of parameters.
From the above remark, it follows that any system g1, . . . , gm of secondary invariants from which
none can be omitted is a system of free generators. Let e1, . . . , em be the degrees of the gi. Then it
follows from the additivity of the Hilbert series with respect to direct sums and from Equation (2.1)
that

H(K[V ]G, t) =
te1 + · · ·+ tem

(1− td1) · · · (1− tdn)
, (3.1)

where as usual di = deg(fi). Furthermore, we can easily calculate the Hilbert series by Molien’s
formula (2.3) (with a possible Brauer-lift). Thus comparing Equations (3.1) and (2.3) yields the
complete information about the degrees of the secondary invariants! Also, comparing (3.1) and
(2.2) shows that f(1) = m, hence 1/|G| = deg(K[V ]G) = m/(d1 · · · dn). We have proved:

Proposition 3.1. If K[V ]G is Cohen-Macaulay, then the (minimal) number of secondary invari-
ants is

∏n
i=1 deg(fi)/|G|.

In order to find the gi most efficiently, we use Lemma 2.1 again. Let g1, . . . , gm ∈ K[V ]G be
homogeneous invariants, with m =

∏n
i=1 di/|G|. Then the gi are secondary invariants if and only

if they generate K[V ]G/A+K[V ]G as a vector space over K. Since the number of gi is correct, this
is equivalent to the condition that the gi are linearly independent modulo A+K[V ]G. A+K[V ]G is
the ideal in K[V ]G generated by f1, . . . , fn, but one cannot calculate with an ideal in K[V ]G before
K[V ]G itself is known. To circumvent this problem, consider the map

K[V ]G → K[V ]/(f1, . . . , fn), f 7→ f + (f1, . . . , fn),

where (f1, . . . , fn) is now an ideal in the polynomial ring K[V ]. Clearly A+K[V ]G lies in the kernel.
Conversely, an element f in the kernel has the form f = h1f1 + · · · + hnfn, and applying the
Reynolds operator πG yields f = πG(f) = πG(h1)f1 + · · · + πG(hn)fn ∈ A+K[V ]G. Therefore we
have an embedding

K[V ]G/A+K[V ]G ↪→ K[V ]/(f1, . . . , fn),

and conclude that g1, . . . , gm are secondary invariants if and only if they are linearly independent
modulo the ideal I := (f1, . . . , fn) in K[V ]. Now let B be a Gröbner basis of I with respect to
any term order, and denote the normal form with respect to B by NB . Such a Gröbner basis has
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already been calculated in the process of finding the primary invariants fi, so there is no extra cost
involved. Then for α1, . . . , αm ∈ K we have

α1g1 + · · ·+ αmgm ∈ I ⇐⇒ α1NB(g1) + · · ·+ αmNB(gm) = 0,

so all we have to do is check the linear independence of the normal forms of the gi.
We arrive at the following algorithm:

(1) Let B be a Gröbner basis of the ideal (f1, . . . , fn) ⊆ K[V ] generated by the primary invariants.
(B was already calculated when the fi were constructed.)

(2) Calculate the degrees e1, . . . , em by using Molien’s formula (2.3) and comparing to (3.1).

(3) For i = 1, . . . ,m perform the following two steps:

(4) Calculate a basis of the homogeneous component K[V ]Gei by using the methods from Section 1.

(5) Select an element gi from this basis such that the normal form NB(gi) lies outside the K-vector
space generated by the polynomials NB(g1), . . . , NB(gi−1).

(6) The invariants g1, . . . , gm are secondary invariants.

One further optimization can be achieved by trying to use products of secondary invariants of
smaller degrees as new secondary invariants. This is very often successful and has two benefits: it
can save the calculation of homogeneous components K[V ]Gei for some large ei, and it produces a
minimal system of generators of K[V ]G as an algebra over A = K[f1, . . . , fn] as a by-product.
Example 3.2.

(a) We can now finish the computation of the invariant ring from Example 2.9(a). From the
Hilbert series we see that the secondary invariants are of degrees 1 and 3. Using the above
algorithm yields secondary invariants

g1 = 1, g2 = x3
1 + x3

2 + x3
3 + x3

4.

(b) In Aslaksen et al. [2], the authors considered the permutation representation on 6 symbols
of the symmetric group G = S4 given by (1, 4, 6, 3)(2, 5) and (2, 4)(3, 5). The ground field is
K = Q. Molien’s formula yields

H(K[V ]G, t) =
1 + t3 + t4 + t5 + t6 + t9

(1− t)(1− t2)2(1− t3)2(1− t4)
.

Indeed, we find primary invariants of degrees 1,2,2,3,3,4. As secondary invariants we obtain

1, g3, g4, g5, g
2
3 , g4g5,

where each gi has degree i. Note that we only had to compute invariants of degrees up to 5.
The complete computation takes about one second in Magma on a Sun workstation, and
confirms the results from [2].

(c) A three-dimensional representation of the group G = A5 over K = R is given by

(1, 2, 4) 7→

1 (1 +
√

5)/2 0
0 0 1
0 −1 −1

 , (1, 2, 3, 4, 5) 7→

−(1 +
√

5)/2 −(1 +
√

5)/2 0
0 0 −1

(1 +
√

5)/2 1 1

 .

The Hilbert series is

H(K[V ]G, t) =
1 + t15

(1− t2)(1− t6)(1− t10)
,

and Magma finds primary invariants of degrees 2,6,10 and secondary invariants of degrees 0
and 15 in about half a second.
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3.2 The modular case

Almost everything that we used in the non-modular case is missing in the modular case: the Cohen-
Macaulay property fails in general, there is no Molien’s formula and no Reynolds operator. Neither
is there any a priori bound known on the degrees of secondary invariants. In that case, we have a
completely different approach to the calculation of secondary invariants which is nevertheless very
straightforward.

First, choose a subgroup H ≤ G with char(K) - |H| (for example, the trivial group). Then use
the algorithm from Section 3.1 to calculate (a minimal set of) secondary invariants h1, . . . , hr ∈
K[V ]H with respect to the primary invariants f1, . . . , fn that were chosen for G. Since K[V ]H is
Cohen-Macaulay, the hi define an isomorphism Ar → K[V ]H between a free module of rank r
over A = K[f1, . . . , fn] and the invariant ring of H. If we assign the degrees of the hi to the free
generators of Ar, this isomorphism becomes degree-preserving. Now take a set S(G/H) ⊆ G which
generates G together with H, and consider the map

K[V ]H →
⊕

σ∈S(G/H)

K[V ], f 7→ (σ(f)− f)σ∈S(G/H),

whose kernel is K[V ]G (see Section 1). Observe that this map is a homomorphism of A-modules.
The polynomial ring is Cohen-Macaulay (take {x1, . . . , xn} as a homogeneous system of param-
eters), hence it is a free module over A whose rank is

∏n
i=1 deg(fi) by Proposition 3.1. Hence

⊕σ∈S(G/H)K[V ] ∼= Ak with k = |S(G/H)| ·
∏n
i=1 deg(fi) (often an enormous number). We obtain

the following commutative diagram with exact rows, where the map Ar → Ak is defined by the
commutativity and M is its kernel.

0 −−−−→ K[V ]G −−−−→ K[V ]H −−−−→
⊕

σ∈S(G/H)K[V ]xo xo xo
0 −−−−→ M −−−−→ Ar −−−−→ Ak

(3.2)

Observe that each map in the diagram is a degree-preserving homomorphism of graded A-modules.
Suppose we can calculate generators for the module M . Then we will obtain secondary invariants

as the images of these generators under the map Ar → K[V ]H , which is given by the secondary
invariants hi of H. Now A = K[f1, . . . , fn] is isomorphic to a polynomial algebra, and Ar → Ak

is a homomorphism of free modules over A. But there are standard techniques (involving Gröbner
bases) to calculate kernels of such maps. We will give a brief account of how these techniques work,
but before doing so let us summarize the algorithm for the computation of secondary invariants in
the modular case.

(1) Choose a subgroup H ≤ G with char(K) - |G| and calculate secondary invariants h1, . . . , hr ∈
K[V ]H for H with respect to the primary invariants f1, . . . , fn that were chosen for G. The
hi define a map Ar → K[V ]H , where as usual A = K[f1, . . . , fn].

(2) Calculate generators for K[V ] as an A-module. These give a map Ak → ⊕σ∈S(G/H)K[V ],
where S(G/H) ⊆ G together with H generates G.

(3) Calculate the preimage under the map Ak → ⊕σ∈S(G/H)K[V ] of each (σ(hi) − hi)σ∈S(G/H)

(i = 1, . . . , r). This is done by writing down a general element of Ak of degree equal to deg(hi)
with unknown coefficients, mapping it into ⊕σ∈S(G/H)K[V ], equating to (σ(hi)−hi)σ∈S(G/H),
and solving for the unknown coefficients. This is a system of inhomogeneous linear equations
over K.

(4) The preimages calculated in step (3) define the map Ar → Ak from the diagram (3.2). Cal-
culate generators of its kernel M using the method described below.
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(5) Use linear algebra to omit generators of M which are redundant. By Lemma 2.1, this will
result in a system of generators with minimal cardinality.

(6) Apply the map Ar → K[V ]H to the generators of M . The result is a set of minimal secondary
invariants for K[V ]G.

The calculation of syzygy modules

Suppose that A is a polynomial ring in variables t1, . . . , tn and ϕ: Ar → Ak is a homomorphism
between free A-modules, given by the images v1, . . . , vr of the free generators of Ar. We are
interested in the kernel M of ϕ, which is also called the syzygy module of the vi. We give a
short summary of a technique for computing generators of M which can be found (with proofs) in
Becker and Weispfenning [4, Section 6.1]. The first step is the calculation of a Gröbner basis of
the submodule in Ak generated by the vi. This requires some explanation: in Ak, a monomial is a
vector with only one nonzero component which is a monomial in A in the usual sense. We can now
fix a term order on the monomials in Ak (where usually precedence is given to the term in A over
the position in the vector) and then talk about the leading monomial of a nonzero vector v ∈ Ak.
Now a Gröbner basis is calculated by the usual Buchberger algorithm, with the modification that
s-polynomials are only formed from vectors whose leading monomials “meet” at the same position
in the vector.

So suppose that a Gröbner basis w1, . . . , ws ∈ Ak of the module generated by the vi has been
calculated. Then for a pair i, j ∈ {1, . . . , s} where the leading monomials of wi and wj meet,
the s-polynomial has the normal form 0 with respect to w1, . . . , ws, since this is a Gröbner basis.
Therefore we have an equation

spoly(wi, wj)−
s∑

ν=1

aνwν = 0

with aν ∈ A, i.e., we have a syzygy ri,j ∈ As of the wi. Let R be the set of all syzygies obtained in
this way. It can be shown that R generates the syzygy module of the wi. But we are interested in
the syzygies of the vi, and this requires a further step.

Since the wi and the vi generate the same submodule of Ak, there exist matrices C ∈ As×r and
D ∈ Ar×s such that w1

...
ws

 = C ·

v1

...
vr

 and

v1

...
vr

 = D ·

w1

...
ws

 .

The matrix C can be obtained by tracing the formation of the wi during the Buchberger algorithm,
and D is computed by taking the normal forms of the vi with respect to w1, . . . , ws (which are 0)
and keeping track of the coefficients. Now usually DC is not the identical matrix Ir, but we have

(DC − Ir) ·

v1

...
vr

 = 0.

Hence the rows of DC − Ir give a set R′ of syzygies of the vi. Finally, the union

R′ ∪ {(a1 . . . as) · C | (a1 . . . as) ∈ R}

is the desired generating set of the syzygy module M of the vi (see Becker and Weispfenning [4,
Theorem 6.4]). So again the hard work lies in the computation of a Gröbner basis.

Returning to the algorithm for the computation of secondary invariants in the modular case, it is
worth noting that in many examples the linear algebra involved in step (3) is much more expensive
than the calculation of the syzygy module in step (4).



14 Gregor Kemper

Example 3.3. We look at two examples now.

(a) Let G be the permutation group of order 2 on 6 symbols, generated by (1, 2)(3, 4)(5, 6), and
take K to be F2. Denote the variables of K[V ] by x1, y1, x2, y2, x3, y3, so the action of G is
by exchanging xi and yi. We find primary invariants

xi + yi and xiyi (i = 1, 2, 3).

Using the above algorithm, Magma finds the following minimal set of secondary invariants:

1, xiyj + xjyi (1 ≤ i < j ≤ 3) and x1x2x3 + y1y2y3.

The complete computation takes less than 1/10 seconds. Note that in this example the number
of secondary invariants (5) exceeds the product of the degrees of the primary invariants divided
by the group order (4), hence by Proposition 3.1 K[V ]G is not Cohen-Macaulay.

(b) Let G be the 3-modular reduction of the Weyl group of type H4. This is a subgroup of order
14 400 of GL4(F9). We will calculate the invariant ring of this group in Section 5. Here we
look at a p-Sylow subgroup P of G, for p = 3. P has order 9 and can be generated by the
matrices 

1 0 0 0
w + 1 1 0 0
−1 0 1 0
w 0 −1 1

 ,


1 0 0 0
1 1 0 0
1 0 1 0
w −w w 1

 ∈ GL4(F9),

where w2 − w − 1 = 0. The computation of primary and secondary invariants by Magma
takes about 4 seconds. The result are primary invariants of degrees 1,2,3,9 and secondary
invariants of degrees 0,3,4,7,8,11. In this example, the number of secondary invariants equals∏n
i=1 deg(fi)/|G|. As we will see in Proposition 4.1, this means that K[V ]G is Cohen-

Macaulay.

4 Properties of the invariant ring

One of the main reasons for computing invariant rings is that one wants to study their structural
properties. This is especially interesting in the modular case, where many theoretical questions are
still open, and computations help to gain experience, counter examples, ideas for conjectures and
in fortunate cases also for proofs. In this section we will see how most interesting properties of
invariant rings can easily be extracted from the data which are available after the calculation of
primary and secondary invariants. The first three subsections concern only the modular case, and
the last two are also interesting in the non-modular case.

4.1 The Cohen-Macaulay property

We have already seen that in the non-modular case all invariant rings of finite groups are Cohen-
Macaulay, and we have seen an example in the modular case where K[V ]G is not Cohen-Macaulay
(Example 3.3(a)). In that example, we used Proposition 3.1, and we will now explain why the
converse of this proposition also holds. Indeed, the polynomial ring K[V ] is Cohen-Macaulay, and
so by Proposition 3.1 it is a free module of rank d =

∏n
i=1 di over K[f1, . . . , fn], where the fi

are primary invariants and the di their degrees. Hence K(V ), the field of fractions of K[V ], is
a vector space of dimension d over the rational function field K(f1, . . . , fn) generated by the fi.
The invariant field K(V )G is an intermediate field between K(f1, . . . , fn) and K(V ), and the index
[K(V ) : K(V )G] is equal to |G| by Galois theory. Hence [K(V )G : K(f1, . . . , fn)] = d/|G|. (This
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provides another proof of the fact that |G| divides the degree product of the primary invariants,
which we used in Section 2.) Now it is easily seen that a system of secondary invariants always
generates K(V )G as a vector space over K(f1, . . . , fn), hence such a system must have at least d/|G|
elements, and more than d/|G| will be linearly dependent over K[f1, . . . , fn]. Thus we have proved:

Proposition 4.1. Let m be the minimal number of secondary invariants with respect to primary
invariants of degrees d1, . . . , dn. Then

m ≥ d1 · · · dn
|G|

,

and equality holds if and only if K[V ]G is Cohen-Macaulay.

This provides a criterion which involves no further computations at all to check the Cohen-
Macaulay property. For example, we see that the invariant ring in Example 3.3(b) is Cohen-
Macaulay.

Experience so far seems to suggest that “most” modular invariant rings are not Cohen-Macaulay.
Several classes of linear groups whose invariant rings are not Cohen-Macaulay are given in
Kemper [16]. For example, if the characteristic p of K divides |G| and the rank of σ−1 is sufficiently
large for all elements σ ∈ G of order p, then K[V ]G is not Cohen-Macaulay.

4.2 Free resolutions and depth

If the invariant ring is not Cohen-Macaulay, then there are linear relations between the secondary
invariants with coefficients in the algebra A = K[f1, . . . , fn] generated by the primary invariants.
The methods to deal with them apply in the more general situation of graded algebras. So as in
Section 2, let R be a finitely generated graded algebra over R0 = K, and let A = K[f1, . . . , fn] be
the subalgebra generated by a homogeneous system of parameters. Assume that, as in Section 3.2,
we have calculated R as a module over A by giving generators of a submodule M ⊆ Ar which is
isomorphic to R (see diagram 3.2). Then to calculate relations over A between the generators is
again the computation of a syzygy module. Indeed, giving m generators for M ⊆ Ar is the same as
giving a homomorphism Am → Ar whose image is M ∼= R. But we saw in Section 3.2 how kernels
of such maps can be calculated. So let S ⊆ Am be the kernel, then we have an exact sequence
0→ S → F0 → R→ 0, where we have written F0 for the free module Ar to get a more convenient
notation. Since all maps are degree-preserving, S is a graded module, hence by Lemma 2.1, a
generating system for S of minimal cardinality can be obtained by deleting superfluous generators.
Now we can continue in the same way and calculate minimal relations between the generators of S,
which leads to an exact sequence 0→ S′ → F1 → F0 → R→ 0. By Hilbert’s syzygy theorem (see,
for example, Benson [5, Theorem 4.2.2]), this process stops after at most n steps, so we will finally
arrive at an exact sequence of graded A-modules with degree-preserving maps

0 −→ Fl −→ . . . −→ F1 −→ F0 −→ R −→ 0, (4.1)

where the Fi are all free modules. Such a sequence is called a minimal free resolution of R. The
length l does not depend on the choice of the generators of the various kernels, as can be seen by
applying Lemma 2.1. It requires some commutative algebra to show that l does not even depend
on the choice of the homogeneous system of parameters (see Benson [5, Section 4.4]). The value l is
called the homological dimension of R. Thus R is Cohen-Macaulay if and only if the homological
dimension is zero, so it is fair to say that the homological dimension measures the deviation from
being Cohen-Macaulay. Another invariant of R which is closely related to the homological dimension
is its depth. Indeed, by the formula of Auslander and Buchsbaum (see Benson [5, Theorem 4.4.4]),
we have

depth(R) = n− l.
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For all that matters here, this can be taken as the definition of the depth. Originally, the depth
is defined as the maximal length of a regular sequence in R, i.e., a sequence f1, . . . , fd ∈ R+ of
homogeneous elements such that fi is not a zero divisor on R/(f1, . . . , fi−1), for all i = 1, . . . , d.

So we have seen that the depth of invariant rings of finite groups can be calculated algorithmi-
cally. Experience shows that this is an easy task compared to the bulk of work that goes into the
calculation of primary and secondary invariants. There are few general results known about the
depth of modular invariant rings. The paper of Ellingsrud and Skjelbred [10] gives a formula for
the depth in the case of cyclic p-groups, where p = char(K). Recently Campbell et al. [8] found a
generalization and an elementary proof of this formula. For example, the invariant ring considered
in Example 3.3(a) has depth 5 and hence homological dimension 1.

4.3 The Hilbert series

If we have an exact sequence of finite dimensional vector spaces starting and ending with 0, then
the dimension formula says that the alternating sum of the dimensions is zero. Hence the same is
true if we consider graded modules and their Hilbert series. So from (4.1) we obtain

H(R, t) =
r∑
i=0

(−1)iH(Fi, t).

Observe that the free generators of Fi must be of the right degrees to make the maps in (4.1)
degree-preserving. If these degrees are ei,1, . . . , ei,si , then

H(Fi, t) = (tei,1 + · · ·+ tei,si ) ·H(A, t) =
tei,1 + · · ·+ tei,si

(1− tdeg(f1)) · · · (1− tdeg(fn))

(see Equation (2.1)).
Another method to calculate the Hilbert series of an invariant ring appears by considering

diagram 3.2 again. If N ⊆ Ak is the image of the map Ar → Ak, then

H(K[V ]G, t) = H(Ar, t)−H(N, t) = H(Ar, t)−H(Ak, t) +H(Ak/N, t).

But H(Ar, t) and H(Ak, t) are known, and H(Ak/N, t) can be computed by a combinatorial algo-
rithm (Bayer and Stillman [3]) from a Gröbner basis of N . Now fortunately a Gröbner basis of N
has already been calculated as the first step in the syzygy calculation leading to M .

One reason why it is interesting to know the Hilbert series of a graded algebra R is that one
can use it to check the so-called Gorenstein property: R is Gorenstein if and only if it is Cohen-
Macaulay and the Hilbert series satisfies

H(R, 1/t) = (−1)dim(R)tl ·H(R, t)

for some l ∈ Z. For example, the invariant rings in Example 3.2(a)–(c) and Example 3.3(b) are
Gorenstein.

4.4 Minimal algebra-generators and β

Let R be a graded algebra over R0 = K and g1, . . . , gr ∈ R+ homogeneous. Then it is seen as in the
proof of Lemma 2.1 that g1, . . . , gr generate R as an algebra over K if and only if they generate the
ideal R+ ⊆ R. Moreover, by Lemma 2.1 this is equivalent to the condition that the images of the
gi generate the quotient R+/R

2
+ as a vector space over K. Hence a homogeneous system of algebra

generators has minimal cardinality if no generator is superfluous, and then the number and degrees
of the generators are uniquely determined. In particular the maximal degree β(R) of a generator
is well defined. One also sees that β(R) remains unchanged under extensions of the ground field,
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i.e., if we pass from R to R ⊗K L for L ≥ K a field extension. Equivalently, β(R) is the minimal
number d such that R is generated as a K-algebra by homogeneous elements of degrees ≤ d.

It is clear that the invariant ringK[V ]G is generated as aK-algebra by the primary and secondary
invariants. Although the secondary invariants are minimal module-generators, they are not minimal
algebra-generators. For example, 1 is always a secondary invariant, but it is redundant as an
algebra-generator. To test whether a given generator f within a system S of homogeneous algebra-
generators is redundant is a linear algebra problem. The procedure is to set up a general element
of the same degree as f in the algebra generated by S \ {f} with unknown coefficients, equating to
f and extracting the corresponding system of linear equations by comparison of coefficients. The
system is solvable if and only if f can be omitted from S. Starting with S as the union of the
primary and secondary invariants, one thus gets a minimal system of algebra-generators, and by
the above, β(K[V ]G) is its maximal degree.

Example 4.2. In Example 3.2, we have β(K[V ]G) = 3, 5, 15 in part (a),(b),(c), respectively. In
Example 3.3(a), it is easily checked that the secondary invariant x1x2x3+y1y2y3 cannot be expressed
in terms of invariants of lower degree, hence β(K[V ]G) = 3. This shows that Noether’s degree
bound (which says that β(K[V ]G) ≤ |G| if char(K) > |G|) does not hold in the modular case.
In Example 3.3(b), we obtain minimal algebra generators of degrees 1,2,3,3,4,9, so the secondary
invariants of degrees 7,8,11 are redundant. We obtain β(K[V ]G) = 9 = |G|, which confirms a
conjecture made by the author that Noether’s degree bound holds if the invariant ring is Cohen-
Macaulay.

4.5 Syzygies

Suppose we have generators h1, . . . , hr of a K-algebra R. Then we have a presentation of R if we
know the kernel I of the map

Φ: K[t1, . . . , tr]→ R, ti 7→ hi,

where the ti are indeterminates. It is one of the basic tasks in invariant theory to compute generators
of I as an ideal in the polynomial ring K[t1, . . . , tr]. The elements of I are usually called syzygies.
When we were talking about syzygies in the preceding sections of this text, we meant elements in
the kernel of a map of modules, not algebras. But in fact we deal with a special case here, since R
becomes a module over K[t1, . . . , tr] via Φ, and then Φ is a module-homomorphism. We have shown
how kernels of maps between free modules over a polynomial ring can be computed. But here the
situation is different since R is usually not free, so we need different methods. Before explaining
them, we remark that if R is a graded algebra and the hi are homogeneous, then I becomes a
homogeneous ideal if we set deg(ti) = deg(hi).

The Gröbner basis method

Suppose now that R ⊆ K[x1, . . . , xn] is a subalgebra of a polynomial ring. Then the standard
method to calculate syzygies is the following. Form the ideal

J = (h1 − t1, . . . , hr − tr) ⊆ K[x1, . . . , xn, t1, . . . , tr]

and calculate a Gröbner basis B of J with respect to a term order with the property that xi is
greater than any monomial in the tj ’s for i = 1, . . . , n. For example, one can use the lexicographical
term order with x1 > . . . > xn > t1 > . . . > tr. Then it is easy to see that the intersection
Bt = B ∩ K[t1, . . . , tr] generates the desired ideal I = ker(Φ) (see Becker and Weispfenning [4,
Proposition 6.15]). If the hi are homogeneous polynomials, then the syzygies in Bt are also ho-
mogeneous (with the proper choice of degrees of the ti), since the Buchberger algorithm preserves
homogeneity. Hence by Lemma 2.1 one obtains a generating set for I of minimal cardinality by
omitting superfluous generators from Bt. This can be done by the usual linear algebra methods.
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The linear algebra method

Now we make the more restrictive assumption that R is a graded algebra and that the set
{h1, . . . , hr} is the union of a homogeneous system of parameters {f1, . . . , fn} and a generating
set {g1, . . . , gm} of R as a module over A = K[f1, . . . , fn]. This is the situation that we have after
primary and secondary invariants have been calculated. Since the fi are algebraically independent,
we are looking for the kernel I of the map

A[t1, . . . , tm]→ R, ti 7→ gi,

where the ti are again indeterminates. Suppose that S ⊆ I is a set of relations containing

(a) generators for the A-module I ∩ (⊕mi=1A · ti) of A-linear relations between the gi, and

(b) for each 1 ≤ i ≤ j ≤ m a relation of the form titj − fi,j with fi,j ∈ ⊕mk=1A · tk.

Then it is easy to show that S generates I (see Kemper and Steel [18, Proposition 12]). In other
words, all that we have to know are the linear relations between the gi with coefficients in A and
the representation of each product gigj as an element of ⊕mk=1A · gk. We explained in Section 4.2
how the linear relations can be calculated. The representation of a product gigj or, more generally,
a homogeneous element f ∈ R of degree d, say, as an element of ⊕mi=1A · gi can be calculated by
equating f to a general element of ⊕mi=1A · gi of degree d with unknown coefficients and solving the
resulting inhomogeneous system of linear equations over K. This approach usually performs better
than the Gröbner basis method. Nevertheless, the computation of relations can sometimes be quite
expensive.

It is often important to obtain a minimal system of generators for the ideal I. If R is a graded
algebra, Lemma 2.1 applies again and tells us that it is enough to omit superfluous generators. If
the linear algebra method is used, one can go a bit further by detecting superfluous relations even
before calculating them: it is quite easy to decide whether the ideal generated by the relations that
have already been computed at some point contains a relation giving the desired representation for
a product gigj . In fact, this again comes down to the solution of a system of linear equations.

R is said to be a complete intersection if the minimal number of generators of I is r−dim(R),
where r is the number of algebra-generators of R and dim(R) is the Krull dimension. In other words,
the dimension of the variety VK̄(r1, . . . , ri) decreases by 1 with each new generating relation ri as it
enters into the ideal. If R is graded, then this property is independent of the choice of the generators
and of the minimal generating relations. In Example 3.2(a) and (c) the invariant rings are complete
intersections.

5 Using ad hoc methods

It often happens in “real life” situations that the algorithms given in the above sections require too
much time or memory to be feasible anymore. Then one has to put ones hope in ad hoc methods,
which in some cases work and produce the invariant ring, and depend on a mixture of experience,
luck and naive optimism. In order to give a feeling of some of the methods that can be applied, we
look at an example of a linear group for which the standard algorithms fail. This group G is the
3-modular reduction of the Weyl group of type H4 of order 14 400. G is a subgroup of GL4(F9) and
can be generated by the full permutation group S4 together with the matrices

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 and


0 −1 −1 ζ2

−1 0 −1 ζ2

−1 −1 0 ζ2

ζ2 ζ2 ζ2 −1

 ,



Computational Invariant Theory 19

where ζ ∈ F9 is an element of order 8. G is a group generated by reflections, but since its order is a
multiple of the characteristic of K, the invariant ring need not be isomorphic to a polynomial ring.
In Example 3.3(b) we have calculated the invariant ring of a p-Sylow subgroup of G, for p = 3, and
seen that this invariant ring is Cohen-Macaulay. It follows by a theorem of Campbell et al. [7] that
the invariant ring K[V ]G of G is also Cohen-Macaulay. In order to compute it, we first need to find
primary invariants.

5.1 Finding primary invariants

We first use the inequality (2.4) to get an idea of the degrees di that primary invariants can have.
The computation of the homogeneous components K[V ]Gd is feasible up to degrees around d = 40,
and (2.4) yields

d1 ≥ 2, d2 ≥ 10, and d3 ≥ 36

but no information on the last degree d4. By trying random invariants f2, f10, f36 of degrees 2, 10
and 36 we are lucky enough to arrive at an ideal (f2, f10, f36) of dimension 1, so there is only one
further primary invariant missing. We have

f2 = x2
1 + x2

2 + x2
3 + x2

4, f10 = x10
1 + x10

2 + x10
3 + x10

4 ,

but f36 is much more complicated. By Proposition 3.1 the degree d4 of the missing primary invariant
must be a multiple of |G|/(d1d2d3) = 20. We already know that d4 > 20, and we rule out the
possibility d4 = 40 by using (2.4) again. So our hope is that we will find a last primary invariant f60

of degree 60. However, it is impossible due to time and storage problems to compute all invariants
of degree 60. Instead, we try to construct f60 by using Steenrod operations.

Steenrod operations are a very helpful tool in modular invariant theory, and we explain their
definition by following Smith [24]. Suppose K = Fq is a finite field. Then we take an additional
indeterminate T and define a homomorphism P : K[V ] → K[V ][T ] of K-algebras by sending xi to
xi +xqi ·T . It is easily checked that P commutes with the action of GL(V ) on K[V ]. For f ∈ K[V ],
write

P (f) =
∑
i≥0

Pi(f) · T i.

Then Pi(f) is the i-th Steenrod operation of f . It follows from the GL(V )-compatibility of P
than Steenrod operations of invariants are again invariants. It is also easy to check that for a
homogeneous f

deg(Pi(f)) = deg(f) + i(q − 1)

if Pi(f) is nonzero, and Pi(f) = 0 if i > deg(f).
We continue the construction of primary invariants. First note that f10 = −P1(f2). Now

f60 = P3(f36) has the desired degree 60, and indeed we are lucky enough to find that the ideal
generated by f2, f10, f36 and f60 has dimension 0. Thus a complete system of primary invariant is
found.

5.2 Finding secondary invariants

Since we know that K[V ]G is Cohen-Macaulay, the number of secondary invariants must be
d1d2d3d4/|G| = 3 by Proposition 3.1. However, it is impossible to run the standard algorithm
given in Section 3.2 for this group, and it is a very hard calculation to produce the secondary invari-
ant by linear algebra methods. Instead we choose another approach. The first secondary invariant
is always g1 = 1. Now we consider the dimensions of the homogeneous components K[V ]Gd and com-
pare them to the dimensions of Ad, where A = K[f2, f10, f36, f60]. This way, we find that d = 22
is the first degree where these dimensions differ, hence there exists an invariant g22 ∈ K[V ]G \ A
of degree 22, which is the second secondary invariant. It is quite easy to find such a g22 by linear
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algebra, but g22 is too long to be printed here. Now we are optimistic and guess that the third (and
last) secondary invariant is g2

22. Assuming that this is true, we must have g3
22 ∈ A+A · g22 +A · g2

22.
Indeed we quickly find the relation

g3
22 + (f11

2 − f2f
2
10)g2

22 + (f17
2 f10 − f7

2 f
3
10 − f12

2 f2
10 + f4

2 f36 + f2
2 f

4
10)g22+

+ f18
2 f3

10 − f28
2 f10 + f3

10f36 + f15
2 f36 − f13

2 f4
10 − f5

2 f
2
10f36 + f8

2 f
5
10 − f3

2 f60 = 0 (5.1)

by linear algebra. Let R = K[f2, f10, f36, f60, g22] be the K-algebra generated by f2, f10, f36, f60

and g22, then we claim that K[V ]G = R. We will use the following proposition for this purpose.

Proposition 5.1. Suppose that R ≤ K[V ]G is a subalgebra of an invariant ring of a finite group.
Then R = K[V ]G if and only if the following three conditions hold:

(a) The field of fractions Quot(R) of R coincides with the invariant field K(V )G = Quot(K[V ]G),

(b) K[V ]G is integral over R, and

(c) R is integrally closed (in its field of fractions).

Proof. First suppose that R = K[V ]G. Then clearly Quot(R) = Quot(K[V ]G), hence (a) and (b)
hold. Furthermore, if f ∈ K(V )G is integral over R = K[V ]G, then f is also integral over K[V ],
hence f ∈ K[V ] since polynomial rings are integrally closed. It follows that f ∈ K(V )G ∩K[V ] =
K[V ]G. Hence R is also integrally closed.

Now suppose that (a)–(c) hold for R, and take an invariant f ∈ K[V ]G. Then f ∈ K(V )G =
Quot(R) is integral over R, hence (c) implies that f ∈ R, so R = K[V ]G.

Returning to our example, we first prove that the condition (a) from Proposition 5.1 holds.
Indeed,

[K(V )G : K(f2, f10, f36, f60)] =
2 · 10 · 36 · 60

|G|
= 3

(see before Proposition 4.1), so g22 /∈ K(f2, f10, f36, f60) implies Quot(R) = K(V )G. Furthermore,
K[V ]G is integral over R since R contains a homogeneous system of parameters. The hardest part
is the verification of condition (c). We first observe that Equation (5.1) gives a presentation of
R, since the minimal polynomial of g22 over K(f2, f10, f36, f60) has the degree 3. Moreover, the
relation shows that

R[f−1
2 ] = K[f2, f10, f36, g22, f

−1
2 ]

is the localization of a unique factorization domain and hence itself a unique factorization domain.
Now an elementary argument shows that if f2 is a prime element in R, then R must also be a
unique factorization domain, and then it is integrally closed. In order to prove that f2 ∈ R is a
prime element, we consider the quotient ring R/(f2) and from Equation (5.1) find the presentation

R/(f2) = K[f10, f36, f60, g22]/(g3
22 + f3

10f36).

Since the polynomial that is factored out is clearly irreducible, R/(f2) is a domain and hence f2 is
a prime element as claimed.

Thus we conclude that indeed K[V ]G = R, and 1, g22, g
2
22 are secondary invariants. In summary,

we have seen that K[V ]G is not a polynomial ring in spite of the fact that G is generated by
reflections, but K[V ]G is a complete intersection.

Using methods like these, Gunter Malle and I recently managed to classify all irreducible reflec-
tion groups that are not classical groups whose invariant rings are complete intersections.
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