The Calculation of Radical Ideals in Positive Characteristic

Gregor Kemper
IWR, Universitat Heidelberg, Im Neuenheimer Feld 368
69 120 Heidelberg, Germany
email Gregor.KemperQiwr.uni-heidelberg.de

June 13, 2002

Abstract

We propose an algorithm for computing the radical of a polynomial ideal in positive char-
acteristic. The algorithm does not involve polynomial factorization.

Introduction

The computation of the radical v/T of a given ideal I < K|[z1,...,2,] in a polynomial ring is one
of the basic tasks in computational commutative algebra. For example, radical computation is an
ingredient in de Jong’s normalization algorithm (see de Jong [18], Decker et al. [8], Matsumoto [22]).

Moreover, algorithms for primary decomposition often start by forming the radical ideal (see Becker
and Weispfenning [2, Algorithm 8.6]).

A very common approach for computing the radical of I is by reducing to the case where I
is zero-dimensional (see Gianni et al. [14], Krick and Logar [20], Alonso et al. [1], Becker and
Weispfenning [2]). A nice presentation of this method can be found in Becker and Weispfenning [2,
Section 8.7]. The main idea is to choose a subset of the indeterminates which is maximally indepen-
dent modulo I. After renumbering, let this subset be {x1,...,24}. Then the main step is to pass to
the ideal I := IK(x1,...,24)[Td41,- .., %s) generated by I in the polynomial ring over the rational

function field K(x1,...,z4), and to compute the radical \/? Note that I is zero-dimensional. In
Alonso et al. [1] some variants and customizations of this idea can be found, all of which reduce
to the zero-dimensional case. Therefore everything hinges on the feasibility of the computation of
zero-dimensional radicals over a rational function field over the original ground field. It should be
mentioned that Eisenbud et al. [10] gave an algorithm for computing radicals which does not reduce
to the zero-dimensional case. However, the limitation of this algorithm is that it requires the ground
field K to be of characteristic 0, or that K[z1,...,x,]/I is generated by elements whose index of
nilpotency is less than char(K) (see Theorem 2.7 in [10]).

The aim of this note is to present a new algorithm for the computation of zero-dimensional
radicals which works over any field K which is finitely generated over a perfect field. For the case that
K is perfect, there are good algorithm for this purpose given by Seidenberg [24] (see also Becker and
Weispfenning [2, Algorithm 8.3]) and Gianni and Mora [13, Algorithm 5.4]. Therefore the main focus
here lies on the case where K is not perfect. This case is highly relevant since it occurs whenever we
want to compute the radical of a positive-dimensional ideal in positive characteristic (see above).
To the best of the author’s knowledge, the only algorithm for the computation of zero-dimensional
radicals over non-perfect fields which has so far appeared in the literature was given by Gianni
et al. [14]. In that paper the authors proposed to compute the radical as the intersection of the
associated primes. Consequently, the algorithm requires factorization of (univariate) polynomials
over a field which is finitely generated over its prime field. This approach poses several practical
problems:

2 Gregor Kemper

e The problem of factorizing a polynomial over a field which is finitely generated over its prime
field is quite hard in terms of the computational cost.

e Although methods to solve the factorization problem were given by Davenport and Trager [0],
these methods are quite involved. The author was not able to find a computer algebra system
where factorization over arbitrary finitely generated fields is implemented. Hermann [17] also
gave methods for factorizing polynomials over a finitely generated field. These methods are
similar to those from [0], but they do not cover the case of positive characteristic. (They fail,
for example for f = aP —t € F, (¢, a)[z] with o =1t.)

e The factorization method given by Davenport and Trager [6] requires the pre-computation of
the squarefree part of a polynomial. This is straight-forward in characteristic 0, but in positive
characteristic there may be a problem. In fact, the authors of [0] refer to Davenport [7, p. 182]
for this task, but the algorithm given in [7] only works over prime fields.

These problems make it very hard to implement the algorithm suggested by Gianni et al. [14]. In

fact, prior to the appearance of the preprint version of this note, there existed no implementation

of radical computation in positive characteristic in any of the major computer algebra systems'.

It is therefore highly desirable to find an algorithm for zero-dimensional radical computation over

non-perfect fields which avoids factorization. Such an algorithm is given in this paper. As a

special case we obtain an algorithm which computes the squarefree part of a polynomial, since
(f) = (sqrfree(f)). This gives an answer to the third point raised above.

Our algorithm is very similar to the one given by Seidenberg [24]. In fact, the problem with
applying Seidenberg’s method in positive characteristic is that squarefree polynomials do not always
remain squarefree if the ground field is extended. Our remedy to this shortcoming is to substitute
the squarefree part of a polynomial by the separable part. The difficulty then is that the separable
part does not live over the original ground field, but instead over a purely inseparable extension. In
Section 1 we give an algorithm which computes the separable part of a polynomial. The separable
part is then used in Algorithm 6, the main algorithm for computing zero-dimensional radicals, which
is presented in Section 2. This algorithm is probably of worse complexity than the characteristic
zero counterpart since it involves additional variables and the computation of an elimination ideal.
On the other hand, one may argue that in positive characteristic the coefficient arithmetic becomes
cheaper. Algorithm 6 is quite simple, easy to implement, and only uses features that are available
in almost all computer algebra systems which support commutative algebra, such as CoCoA [5],
MACAULAY (2) [15], MAGMA [3], or SINGULAR [16]. The author has implemented Algorithm 6
in MAGMA. 1t is planned to include this implementation into the standard distribution of MAGMA
soon. An implementation in SINGULAR was written by Gerhard Pfister. This is incorporated into
Version 2.0 and beyond of SINGULAR.

While this paper was in the refereeing process, Matsumoto published an article [23] which gives
an entirely different algorithm for calculating the radical of an ideal in a polynomial ring in positive
characteristic. Therefore a third section has been added to this article which contains a brief
discussion of Matsumoto’s algorithm and some comparisons of performance.

Acknowledgments. 1 thank Gerhard Pfister, Lorenzo Robbiano, and Wolmer Vasconcelos for
helpful conversations and for their comments on the preprint version of this note. I am also thankful
to the anonymous referees for suggesting improvements and pointing out some typing errors.

1 The separable part

Let K be a field and f € K[z] a non-zero polynomial with coefficients in K. We call f separable
if f has no multiple roots in a splitting field L > K (see Lang [21, Chapter VII, § 4]). This is

INow implementations in SINGULAR (Version 2.0) and in MAGMA exist.

Radical Ideals in Positive Characteristic 3

equivalent with ged(f, f') = 1 (see Becker and Weispfenning [2, Proposition 7.33]). If

f=c

(z — ;)

e

Il
—

3
with ¢ € K\ {0} and «; € L pairwise distinct roots of f, we write

sep(f) :==c- H(x — ;) € L[z]

1=

—

for the separable part of f. Notice that this coincides with the squarefree part of f if K is
perfect. For f,g € KJ[z] not both equal to zero, we denote the monic greatest common divisor
by ged(f,g). It is well known that in the case char(K) = 0 one has sep(f) = f/ged(f, f'). The
following algorithm calculates sep(f) in the case K = k(t1,...,t,) with ¢; indeterminates and k
a perfect field of characteristic p > 0. We work with the tacit assumption that we can compute
p-th roots of elements from k, or at least all those p-th roots that are required in the algorithm.
Algorithm 1 is essentially contained in Proposition 3.7.12 from Kreuzer and Robbiano [19]. We
present the algorithm and its proof here for the reader’s convenience.

Algorithm 1 (Separable part).
Input: A non-zero polynomial f € k(t1,...,tm,)[z] with k a perfect field of positive characteristic p.

Output: The separable part of f as a polynomial in k(/%1, ..., t,n)[z] with ¢ a p-power.

Set h := ged(f, f1).
Set g1 := f/h.
Set h := ged(h, b).

)
)
)
4) If h = h, go to (6).
) Set h:=h and go to (3).
) If h =1 then return g;.
) Write h = u(2P) with u € k(t1, ..., tm)[x]. (This is possible since h' =0.)
)

Form v € k(¢/t1,..., ¥/tm)[x] from u by replacing every t; occurring in u with ¢/¢; and every
a €k in u with ¢/a € k. (Thus vP = h.)

(9) Compute g5 := sep(v) by a recursive call.

(10) Compute g3 := sep(g1g2) by a recursive call and return gs.

Remark 2. The computation of greatest common divisors in steps (1) and (3) of the algorithm
can be performed by the Euclidean algorithm (see Geddes et al. [12, Section 2.4]), and is therefore
much cheaper than factorization of the polynomials. N

Proposition 3. Algorithm 1 terminates after finitely many steps and correctly calculates sep(f).

Proof. We proceed by induction on the (z-)degree of f.
Choose a field extension L > K := k(t1,...,t,) containing all roots of f and write

T S

f=c-I[@=a)® - JJ - By,

=1 i=1

4 Gregor Kemper

where r, s, d; and e; are non-negative integers with 0 < d; < p and e; > 0, and ¢, «; and 3; are
elements in L with o; # o and §; # §; if ¢ # j. Thus

and

=1 i=1

The polynomial g; formed in line (2) of the algorithm is therefore

-
g1 =¢- H(x -),
i=1

and the polynomial A in line (6) is

S

| (E

i=1
Hence the algorithm is correct if s = 0. On the other hand, if s > 0, then v in line (8) is

S

v= H(x - B,

i=1
and deg(v) < deg(h) < deg(f). By induction, the recursive call in line (9) terminates and yields

S

92 = [[(= = 5.

i=1

We have deg(g1g2) =7+ s < r+ ps < deg(f), hence the recursive call in line (10) yields

g3 = sep(g192) = sep(f).

2 Zero-dimensional radicals

The goal of this section is to give an algorithm for the computation of the radical of a zero-
dimensional ideal in a polynomial ring. The following proposition is Lemma 92 in Seidenberg [24]
(see also Becker and Weispfenning [2, Lemma 8.13]).

Proposition 4. Let I Q Klxy,...,xy] be an ideal in a polynomial ring over a field K. If I N K|[x;]
contains a separable polynomial for each i =1,...,n, then I = /1.

Remark 5. Krick and Logar [20] state Proposition 4 with “separable” replaced by “squarefree”,
but this does not hold in positive characteristic. A counter example is given by the ideal I =
(zh —t, x5 —t) ST, (t)[x1, 9], since w1 —x9 € VI\I (see Becker and Weispfenning [2, Example 8.16]).
<

Suppose that I < K[z1,...,%,] is a zero-dimensional ideal (i.e., K[z]/I has Krull dimension 0).
Then I N K[x;] # 0 for all i (see, for example, Eisenbud [9, Corollaries 2.15 and 9.1]). One
can compute the elimination ideals I N Kz;] by using Grébner bases with respect to appropriate

Radical Ideals in Positive Characteristic 5

monomial orderings (see Becker and Weispfenning [2, Algorithm 6.1]). A more efficient algorithm
for the computation of a non-zero f; € INK|[xz;], which requires only one Grébner basis computation
with respect to an arbitrary monomial ordering and linear algebra, was given by Faugere et al. [11].
The following algorithm computes the radical of a zero-dimensional ideal over k(ti,...,t,,) with
k a perfect field of positive characteristic. This algorithm extends Algorithm 8.3 in Becker and
Weispfenning [2] and Corollary 3.7.16 in Kreuzer and Robbiano [19].

Algorithm 6 (Zero-dimensional radical).

Input: A zero-dimensional ideal I <9 K|[z1,...,x,] in a polynomial ring over the rational function
field K = k(t1,...,tm) with k a perfect field of positive characteristic p.

Output: /1.
(1) For i€ {1,...,n}, find a non-zero f; € I N K[x;].
(2) For each i, compute sep(f;) € k(*V/t1,..., *\/tm)[ri] by using Algorithm 1.

(3) For each i, write sep(f;) = g;(1,- .., ¥/tm,x;), where q := p", v := max{ry,...,r,}, and
9i € K[y1, .-+, Ym,x;] with new indeterminates y1, ..., Ym.

(4) Form the ideal
J=1K[yi, ... Ym, @1, p] + (g1, 9n) + (W] —t1, .. yd, —tm)
QKW Yy L1y s T
(5) Calculate the elimination ideal
Ji=JNKlz1,..., 2]
(by using Algorithm 6.1 in Becker and Weispfenning [2]) and return J.

Theorem 7. Algorithm 6 is correct.

Proof. Set
L :K[ylv7ym]/(y(1]_tlvvygn_tm) = k(\q/aw"v Vqtm)'

The canonical projection K[y1,...,ym] — L induces a map
o Kly1, -y Ym, T1, -, Tn] — Llx1, ..., 20],
and ¢(g;) maps to sep(f;) under the isomorphism L & k(¢/t1,..., ¥/t;). The restriction of ¢ to

K[zq,...,x,] is injective, so we may view K|[z1,...,z,] as a subring of L[z, ..., x,]. Consider the
ideal
Ji=1IL[zy,...,z.)+ (p(g1),- - 0(gn)) Q L[y, ..., 2.],
where IL[zy,...,x denotes the ideal in L[z, ..., z,] generated by I. It follows from Proposition 4
that J = VIL[zy,...,2,]. Consider the composition
Kyiy oy Ym, X1y .oy Tp) 2, Llzy,...,zn]) — Llzy, ... 20]/J.

The kernel of this composition is clearly J (as defined in step (4) of Algorithm 6), and hence for
Y Klxy, .o, 20] = KU1, oo Ymy T1s -+« T LN Lzy,...,z,) — L[xl,...,xn]/j,

where the first map is the inclusion, we have ker(v)) = J N K[x1,...,2,] = J. Since ¢ is the
same as the inclusion Klzy,...,2z,] € Lzy,...,2,] followed by reduction modulo J, we obtain
J=JNK]|xy,...,2,]. Therefore

J=Klzy,...,xn) \IL[zy,... 20 = /K[z1,..., 20 N IL[xy,. .. 20] = VI,

where Proposition 2.6.12 in Kreuzer and Robbiano [19] was used for the last equality. O

6 Gregor Kemper

Remark 8. (a) Suppose that K is a field of positive characteristic which is finitely generated
over a perfect field k. Then K can be written as

K= k(tl,...7tm)[z1,...7zr]/m

with m < k(t1,...,¢m)[21,. ., 2] a maximal ideal. If K is given as the field of fractions of a
finitely presented algebra over k, it is not hard to get K into the above form. Let z1,...,z,
be further indeterminates and consider the canonical epimorphism

@ k(t1, .o tm) 21, 2 X1y @] — KX, 2]

Ifanideal I < K[zy,...,x,])isgiven by I = (@(g1),...,0(q1)) with g; € k(t1,...,tm)[21,- -, 2r,
X1,...,%n), then it is easy to see that

\/f:so(m+(91,-~-,gz)>-

If moreover I is zero-dimensional, then the same is true for m + (¢1,...,¢;), hence we can
calculate the radical ideal on the right hand side by Algorithm 6.

(b) If K is any field of characteristic 0, then the radical of a zero-dimensional ideal I <
K[z1,...,x,] can be computed by Algorithm 8.3 in Becker and Weispfenning [2]. <

Ezample 9. (a) Let us examine the example I = (2] — ¢, 25 — t) Q F,(¢)[x1,22] (see Remark 5).
We have
sep(z? —t) = x; — V4,

so0 in step (4) of Algorithm 6 we obtain the ideal
J = (xl — Y, T2 — yvyp - t) S‘]Fp(t)[xla $27y]'

We choose the lexicographical monomial ordering with y > x1 > x2 on F,(¢)[z1,22,y]. By
replacing z1 — y and y? — t by their normal forms with respect to x5 — y, we obtain the new
basis

G ={z1 — x2,20 —y,ab — t}.

G is a Grobner basis since the polynomials in G have pairwise coprime leading monomials.
Hence step (5) of Algorithm 6 yields

VI = JNF,t)]x1, 2] = (21 — x9, 25 — 1),
which is the correct result.

(b) We can also use Algorithm 6 to compute the squarefree part sqrfree(f) of a polynomial f,
since 1/ (f) = (sqrfree(f)). Consider the example

f=a% — (P +t)zP + P = (2P — t) (2P — tP) € F,(t)[2].
In step (4) of Algorithm 6 we obtain the ideal
J= (@ —y)(z—-y")y" - 1),

It is not hard to see that a Grobner basis with respect to the lexicographical monomial ordering
with y > x is
(v — 1, (y—)@ — £), (2" — t)(w — D)}

Thus /(f) = ((z? —t)(x — t)), and we obtain sqrfree(f) = (2P — t)(xz — t). Of course the
algorithm runs without “knowing” the factorization of f. N

Radical Ideals in Positive Characteristic 7

3 Matsumoto’s algorithm and some running times

As mentioned at the end of the Introduction, an alternative algorithm for computing radical ideals
in positive characteristic appeared while this paper was in the refereeing process. This algorithm
was given by Matsumoto [23]. The central idea in Matsumoto’s approach is to consider the en-
domorphism ¢ on K[Xj,...,X,] given by f +— fP where p = char(K). Matsumoto’s algorithm
iteratively replaces I by its preimage o~ 1(I) until I = o~ 1(I). The main part of the algorithm
is the computation of ¢~!(I), which for K finitely generated over a perfect field can be done by
calculating a certain elimination ideal. The most remarkable feature of Matsumoto’s algorithm is
that it is not restricted to the zero-dimensional case. Thus for higher-dimensional ideals the stan-
dard reduction to dimension zero (see in the Introduction) is not necessary, which certainly makes
Matsumoto’s algorithm more elegant. On the other hand, the computation of ¢~1(I) becomes
increasingly expensive for large p.

Matsumoto [23] gave a number of benchmark tests for his algorithm, which were taken from
Caboara et al. [4]. Of course the examples from [4] are all in characteristic zero, and Matsumoto
reduced them modulo various primes. For getting a fair comparison of the performance of Mat-
sumoto’s algorithm and the algorithm from this paper, we used exactly the same benchmark tests,
and added one more. This additional test is given by the principal ideal generated by

D: 23 + 4a3x3 — 2323 — 18z 2923 + 423 + 2723,

which is the relation satisfied by the square root of the discriminant of a general polynomial of
degree 3. Of course this ideal is already radical except in characteristic 2. The other test ideals
are labeled E2, E3, L, M, 83, and C. We do not reprint them here, since they can be found in
Matsumoto [23] or Caboara et al. [1]. In order to obtain meaningful running times, the author
implemented Matsumoto’s algorithm in MAGMA, and compared the timings with the MAGMA
implementation of the algorithm from this paper. It should be noted that Algorithm 6 of this paper
was only used in its pure form for the examples in dimension zero (e.i., E2 and E3), whereas in
positive dimension the somewhat cumbersome reduction technique from Becker and Weispfenning [2,
Section 8.7] (with Algorithm 6 as its core) was used. The computation times (in seconds) are given
in Table 1. All computations were done on a SUN workstation with a 440MHz Ultrasparc processor
and 512 MB of memory. The entry “infeasible” in Table 1 signifies that after about half an hour of
computing the algorithm was not even near completion. Every computation was attempted in the
characteristics 2, 3, 5, 7, 11, 53, and 251, following the standard of [23]. If a characteristic does not
appear in Table 1, this means that none of the algorithms was feasible.
We finish with three observations on the timings:

e Our timings for Matsumoto’s algorithm are generally somewhat smaller than the ones given
in [23], except for L in characteristic 2. But the ratios between the timings for different
examples roughly correspond to those obtained in [23].

e For ideals of positive dimension, Matsumoto’s algorithm is usually better, except for large
characteristics.

e For zero-dimensional ideals, the algorithm of this paper performs better. The difference in
performance becomes larger as the characteristic grows.

References

[1] Maria Emilia Alonso, Teo Mora, Mario Raimondo, Local Decomposition Algorithms, in: Shojiro
Sakata, ed., Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8),
Lect. Notes Comput. Sci. 508, pp. 208-221, Springer-Verlag, Berlin, Heidelberg, New York
1991.

2]
3]

(4]

[9]

[10]

[11]

[12]

[13]

[17]

[18]

Gregor Kemper

Thomas Becker, Volker Weispfenning, Grobner Bases, Springer-Verlag, Berlin, Heidelberg, New
York 1993.

Wieb Bosma, John J. Cannon, Catherine Playoust, The Magma Algebra System I: The User
Language, J. Symbolic Comput. 24 (1997), 235-265.

Massimo Caboara, Pasqualina Conti, Carlo Traverso, Yet Another Algorithm for Ideal Decom-
position, in: Harold F. Mattson, Teo Mora, eds., Applied Algebra, Algebraic Algorithms and
Error-Correcting Codes (AAECC-12), Lect. Notes Comput. Sci. 1255, pp. 39-54, Springer-
Verlag, Berlin, Heidelberg, New York 1997.

A. Capani, G. Niesi, L. Robbiano, CoCoA: A System for Doing Computations in Commutative
Algebra, available via anonymous ftp from cocoa.dima.unige.it, 2000.

James H. Davenport, Barry M. Trager, Factorization over Finitely Generated Fields, in: Sym-
bolic and Algebraic Computation, Snowbird/Utah 1981, pp. 200-205, ACM, 1981.

James Harold Davenport, On the Integration of Algebraic Functions, Lect. Notes Comput.
Sci. 102, Springer-Verlag, Berlin, Heidelberg, New York 1981.

Wolfram Decker, Theo de Jong, Gert-Martin Greuel, Gerhard Pfister, The Normalization: a
New Algorithm, Implementation and Comparisons, in: P. Drixler, G.O. Michler, C.M. Ringel,
eds., Computational Methods for Representations of Groups and Algebras, Euroconference in
Essen, Germany, April 1-5, 1997, Prog. Math. 173, pp. 177-185, Birkh&user, Basel 1999.

David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-
Verlag, New York 1995.

David Eisenbud, Craig Huneke, Wolmer V. Vasconcelos, Direct Methods for Primary Decom-
position, Invent. Math. 110 (1992), 207-235.

J. C. Faugere, P. Gianni, D. Lazard, T. Mora, Efficient Computation of Zero-dimensional
Grébner Bases by Change of Ordering, J. Symbolic Comput. 16 (1993), 329-344.

K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Kluver, Boston,
Dordrecht, London 1992.

Patrizia Gianni, Teo Mora, Algebraic Solution of Systems of Polynomial Equations Using
Grébner Bases, in: L. Huguet, A. Poli, eds., Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (AAECC-5), Lect. Notes Comput. Sci. 356, pp. 247-257, Springer-Verlag,
Berlin, Heidelberg, New York 1989.

Patrizia Gianni, Barry Trager, Gail Zacharias, Grobner Bases and Primary Decomposition of
Polynomial Ideals, J. Symbolic Comput. 6 (1988), 149-267.

Daniel R. Grayson, Michael E. Stillman, Macaulay 2, a Software System for Research in Alge-
braic Geometry, available at http://www.math.uiuc.edu/Macaulay2, 1996.

Gert-Martin Greuel, Gerhard Pfister, Hannes Schonemann, Singular Version 1.2 User Manual,
Reports On Computer Algebra 21, Centre for Computer Algebra, University of Kaiserslautern,
1998, available at http://www.mathematik.uni-k1.de/~zca/Singular.

Grete Hermann, Die Frage der endlich vielen Schritte in der Theorie der Polynomideale, Math.
Ann. 95 (1926), 736-788.

Theo de Jong, An Algorithm for Computing the Integral Closure, J. Symbolic Comput. 26
(1998), 273-277.

Radical Ideals in Positive Characteristic 9

[19] Martin Kreuzer, Lorenzo Robbiano, Computational Commutative Algebra 1, Springer-Verlag,
Berlin 2000.

[20] Teresa Krick, Alessandro Logar, An Algorithm for the Computation of the Radical of an Ideal
in the Ring of Polynomials, in: Harold F. Mattson, Teo Mora, T. R. N. Rao, eds., Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-9), Lect. Notes Comput.
Sci. 539, pp. 195-205, Springer-Verlag, Berlin, Heidelberg, New York 1991.

[21] Serge Lang, Algebra, second edn., Addison-Wesley, Redwood City, California 1984.

[22] Ryutaroh Matsumoto, On Computing the Integral Closure, Comm. in Algebra 28 (2000), 401—
405.

[23] Ryutaroh Matsumoto, Computing the Radical of an Ideal in Positive Characteristic, J. Sym-
bolic Comput. 32 (2001), 263-271.

[24] A. Seidenberg, Constructions in Algebra, Trans. Amer. Math. Soc. 197 (1974), 273-313.

10

Example characteristic dimension Matsumoto this paper
E2 2 0 0.23 0.06
E2 3 0 1.18 0.09
E2 5 0 3.79 0.19
E2 7 0 3.63 0.22
E2 11 0 2.71 0.21
E2 53 0 10.25 0.22
E2 251 0 infeasible 0.23
E3 2 0 0.33 0.09
E3 3 0 1.59 0.16
E3 5 0 3.08 0.20
E3 7 0 3.19 0.23
E3 11 0 2.99 0.24
E3 53 0 25.0 0.27
E3 251 0 infeasible 0.26

L 2 7 477.53 infeasible
M 2 1 0.16 0.26
M 3 1 0.18 0.33
M 5 1 0.18 0.33
M 7 1 0.21 0.32
M 11 1 0.20 0.33
M 53 1 0.21 0.30
M 251 1 1.44 0.30
83 2 5 6.87 infeasible
83 3 5 15.800 infeasible
C 2 5 4.89 infeasible
C 3 5 49.83 infeasible
D 2 3 0.01 0.04
D 3 3 0.00 0.03
D 5 3 0.16 0.03
D 7 3 1.31 0.03
D 11 3 33.37 0.03
D 53 3 infeasible 0.03
D 251 3 infeasible 0.03

Table 1: Timings for Matsumoto’s algorithm [

Gregor Kemper

| and the algorithm in this paper.

	The separable part
	Zero-dimensional radicals
	Matsumoto's algorithm and some running times
	References

