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Abstract

This paper studies separating subsets of an invariant ring or, more generally, of any set
consisting of functions. We prove that a subset of a finitely generated algebra always contains
a finite separating subset. We also show that a general version of Noether’s degree bound
holds for separating invariants, independently of the characteristic. The paper also contains
a conceptual investigation of the difference between separating and generating subsets.

Extended abstract

The main objects of interest in invariant theory are invariant rings of finite or algebraic groups.
One of the classical problems is the computation of generating subsets of invariant rings. This
is a difficult task, which in almost all cases involves Gröbner basis computations. In other cases,
finite generating subsets do not exists at all, and there is still a range of cases where finite
generating subsets exist, but we do not have algorithms for computing them. For an overview on
these topics, we refer to the book [1] by Harm Derksen and the author. Another main topic in
invariant theory is separating properties of invariants, i.e., the question which group orbits can
be separated by invariants.

A few years ago, a new trend emerged, which combines the two aspects mentioned above.
Instead of considering (and being obsessed with) generating subsets, one considers sets of invari-
ants which have exactly the same separating capabilities as the invariant ring as a whole. This
concept is made precise (in a much more general context) in Definition 1.1 of this paper. The
concept of separating subsets is a weakening of the concept of generating subsets. Therefore it
is reasonable to hope that separating invariants may be better behaved than generating ones.

The idea of using separating invariants is very natural. It is also very suitable for applications.
In fact, applications of invariant theory to such areas as computer vision, graph theory, and
geometric classification all rely on separating properties of invariants. Therefore, using separating
invariants is much more appropriate for these applications than using generating invariants.
Separating invariants are also of relevance in computational invariant theory. In fact, we have
an algorithm for computing separating invariants of reductive groups acting on affine varieties
(see Kemper [7]). In the same paper, this algorithm is combined with the observation that in the
case of a linear action on a vector space, the gap between separating and generating invariants
can be bridged algorithmically. This combination yields an algorithm for computing generating
invariants of reductive groups acting linearly on finite-dimensional vector spaces, where separating
invariants provide an important intermediate step. This was recently extended further by Derksen
and Kemper [2], who gave an algorithm for computing generating invariants of a reductive group
acting on an affine variety.

The following results indicate that separating invariants are indeed better behaved than gener-
ating ones, especially when one considers the modular case, i.e., the case of positive characteristic
dividing the group order, if the group is finite.
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(1) Every invariant ring has a finite separating subset (see Derksen and Kemper [1, Theo-
rem 2.3.15]). In contrast, not all invariant rings have finite generating subsets. (The first
such examples were found by Nagata [8], thus providing counter examples to Hilbert’s
fourteenth problem).

(2) For finite groups acting linearly on finite-dimensional vector spaces, Noether’s degree bound
always holds for separating invariants, i.e., there exist homogeneous separating invariants
of degree at most the group order (see [1, Corollary 3.9.14]). But for generating invariants,
the Noether bound is often violated in the modular case (see the remark after the proof of
Corollary 3.9 in this paper).

(3) An important classical tool in invariant theory is Weyl’s polarization theorem, which says
the following: Let G be a group acting linearly on an n-dimensional vector space V , and
let S be a generating subset of the ring K[V n]G of vector invariants of n copies of V (with
V n standing for the direct sum of n copies of V with diagonal G-action). Then polarizing
the elements of S yields a generating subset of the ring K[V m]G of vector invariants of any
number of copies. But this theorem only holds if char(K) = 0, and fails in positive charac-
teristic. The question is what happens when one substitutes “generating” by “separating”
in Weyl’s theorem. The answer was recently given by Draisma et al. [4], who proved that
Weyl’s theorem holds for separating invariants, independently of the characteristic.

(4) Along similar lines, the following nice result was obtained by Domokos [3]: If G acts linearly
on an n-dimensional vector space V , then for each m there exist separating invariants in
K[V m]G each of which depend only on at most 2n of its m arguments. An even better
result holds if G is reductive.

In this paper, we add further substance to the claim that separating subsets are better behaved
than generating ones. We do that by generalizing the results mentioned in (1) and (2) above. We
prove that any subset F ⊆ A of a finitely generated algebra A of functions has a finite separating
subset (see Theorem 2.1). The finiteness result mentioned in (1) appears as the (very) special
case that F is the invariant ring of some group. Our proof is highly inconstructive. In contrast,
we give a completely constructive method for converting a finite separating subset {f1, . . . , fn}
of a set F of functions into a finite separating subset of the set FG of invariants, provided the fi

all have finite G-orbits (see Theorem 3.1). This algorithm only requires arithmetic operations in
a finitely generated algebra (in the standard case, a polynomial algebra), and is, in particular,
Gröbner basis-free. The algorithm implies a very general version of the “relative” Noether-
bound (see Corollaries 3.8 and 3.9), which is independent of the characteristic. By counting
the separating invariants obtained from our algorithm, we find upper bounds for the number
of separating invariants (see Corollary 3.4). It may come as a surprise that these bounds are
significantly lower than the minimal numbers of generating invariants for some examples.

A further goal of this paper is to shed some light on the conceptual differences between
separating and generating subsets. We do this by interpreting the concept of “separating” as
“generating in a different way” (see Theorem 1.10 (c)). This result is stated in terms of the
functional hull, which we introduce Definition 1.6. The functional hull is a closure operation in
the same way as generation as groups or as algebras, or formation of a convex hull are closure
operations (see Proposition 1.9). We also show that in the theory of functionally closed sets,
subobjects of finitely generated objects are always finitely generated (Corollary 1.11).

Considering so much evidence for the good behavior of separating invariants, one wonders
if separating invariants also have better structural properties than generating ones. In Exam-
ple 1.5, we see a separating subalgebra which is a hypersurface, whereas the complete invariant
ring is not even Gorenstein. Do all invariant rings have such nice separating subalgebras? If it is
true that all defects of modular invariant theory go away when considering separating invariants
instead of generating ones, then every invariant ring should have a separating subalgebra that
is Cohen-Maculay. Unfortunately, to date almost nothing is known about these questions. In
particular, we do not know of any example of an invariant ring which is not Cohen-Macaulay,
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but which has a separating subalgebra which is Cohen-Macaulay. But neither do we have an
example where we know for sure that such a separating subalgebra does not exist.

I would like to thank Will Traves for some interesting conversations, which prompted me to
start wondering about the “relative” way in which Theorem 3.1 is now stated.

1 Separating and generating subsets

Everything in this paper is built on the following definition.

Definition 1.1. Let X and K be sets. We write KX for the set of all functions from X to K.
Let F ⊆ KX . A subset S ⊆ F is called F -separating if for all x, y ∈ X we have:

If f(x) = f(y) for all f ∈ S, then f(x) = f(y) for all f ∈ F.

In other words, a separating subset S is a subset of F which has the same capabilities of
separating points from X as F itself: If two points can be separated by a function from F , i.e., if
the function takes different values at these points, then they can also be separated by a function
from S. In the context of this paper, the main interest lies in the case where F is the invariant
ring of a group acting on a vector space or a variety X over a field K. But we first consider a
general example.

Example 1.2. Assume that K contains at least two distinct elements a, b. For y ∈ X define

δy: X → K, x 7→

{
a if x = y

b if x 6= y
.

Then S := {δy | y ∈ X} is KX -separating. /

Every set F ⊆ KX of functions X → K induces an equivalence relation ∼F on X, defined by
saying x ∼F y for x, y ∈ X if f(x) = f(y) for all f ∈ F . A subset S ⊆ F is F -separating if and
only if the relations ∼S and ∼F coincide. The following proposition shows that the restriction
that S be a subset of F is essential, since without that restriction very small separating sets
would often exist (see Example 1.4).

Proposition 1.3. Let X and K be sets and S ⊆ KX a set of functions. Let ≈ be an equivalence
relation that is coarser than ∼S (i.e., x ∼S y implies x ≈ y). Then there exists a subset T ⊆ KX

whose cardinality is less than or equal to the cardinality of S, such that T induces ≈.

Proof. We write ∼ for ∼S , and X/∼ := {[x]∼ | x ∈ X} for the set of equivalence classes. The
map

Φ: X → KS with Φ(x): S → K, f 7→ f(x) for x ∈ X

induces an injection X/∼ ↪→ KS . Since X/≈ has cardinality less than or equal to the cardinality
of X/∼, it follows that there also exists an injection Ψ: X/≈ ↪→ KS . For f ∈ S, define

gf : X → K, x 7→ Ψ([x]≈) (f),

and set T := {gf | f ∈ S}. Clearly T has cardinality no greater than that of S. Take x, y ∈ X.
It follows from the definition of gf and from the injectiveness of Ψ that x ≈ y if and only if
gf (x) = gf (y) for all f ∈ S.

Example 1.4. If K is of the same or greater cardinality than X (which is the case in the standard
situation where K is an infinite field and X is a finite-dimensional vector space or an affine variety
over K), then there exists an injection f : X → K, so with S := {f} the induced relation ∼S

is equality. By Proposition 1.3, every equivalence relation on X is induced by a single function
X → K. /
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If K is a commutative ring with unity, then KX , equipped with pointwise operations, is an
associative, commutative K-algebra with unity. If F ⊆ KX is a subalgebra generated (as an
algebra) by S ⊆ F , then S is clearly F -separating. In other words, the concept of a separating
subset is a weakening of the concept of a generating subset. This is illustrated by the following
example.

Example 1.5. Let K be a field, X = K2, and let x and y be the coordinate functions on X.
Consider the functions

f1 = x3, f2 = x2y, f3 = xy2, f4 = y3,

and let F = K[f1, . . . , f4] be the subalgebra of KX generated by the fi. In fact, if char(K) 6= 3
and K contains a primitive third root of unity ω, then F is the invariant ring of the action of
the group G = 〈ω〉 on X by scalar matrices. Consider the subset

S = {f1, f2, f4}.

For a vector v ∈ X with f1(v) 6= 0 we have f3(v) = f2(v)2/f1(v). On the other hand, f1(v) = 0
implies f3(v) = 0. Thus S is F -separating. However, S does not generate F as a K-algebra. In
fact, there exists no generating subset of F with fewer than 4 elements.

Note that the algebra K[S] generated by S is a hypersurface, whereas F is Cohen-Macaulay
but not Gorenstein (and in particular not a hypersurface). So in this example we have a separating
subalgebra with much better structural properties. /

At this point we embark on a digression. To obtain a better understanding of the comparison
between “generating” and “separating”, we wish to interpret the concept of “separating” as a
different nature of generation, much in the same way as we already distinguish between generation
as an ideal, field extension etc. Readers who are not interested in this may choose to proceed to
Section 2.

Definition 1.6. Let X and K be sets and S ⊆ KX . Define a map

ΦS: X → KS by ΦS(x): S → K, f 7→ f(x) for x ∈ X.

The functional hull of S is defined by

〈S〉func := {ψ ◦ ΦS | ψ: KS → K a function} ⊆ KX .

S is called functionally closed if 〈S〉func = S.

Example 1.7. Let S be the set of all constant functions X → K. Then S if functionally closed.
Moreover, S = 〈∅〉func. /

If S = {f1, . . . , fn} ⊆ KX is a finite set of functions, then the functional hull of S is easier to
express by defining

(f1, . . . , fn): X → Kn, x 7→ (f1(x), . . . , fn(x))

and observing that

〈S〉func := {ψ ◦ (f1, . . . , fn) | ψ: Kn → K a function}.

If K is a commutative ring and S ⊆ KX , it is clear that the subalgebra K[S] generated by S
is contained in the functional hull 〈S〉func.

Lemma 1.8. Let X and K be sets, and S ⊆ KX . Then we have

(a) S ⊆ 〈S〉func.

(b) Every constant function X → K lies in 〈S〉func.

(c) If T ⊆ S, then 〈T 〉func ⊆ 〈S〉func.

(d) 〈S〉func is functionally closed.
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Moreover, if M is a non-empty set of functionally closed subsets of KX , then

F :=
⋂

S∈M
S

is functionally closed.

Proof. To prove (a), take f ∈ S and define ψf : KS → K, v 7→ v(f). Then ψf ◦ ΦS = f , so
f ∈ 〈S〉func. To prove (b), take a ∈ K and define ψa: KS → K, v 7→ a. Then ψa ◦ ΦS is the
constant function X → K mapping everything to a. To prove (c), take ρ: KT → K and define

ψ: KS → K, v 7→ ρ(v|
T
).

Let x ∈ X. Then clearly ΦS(x)|T = ΦT (x), so

(ψ ◦ ΦS)(x) = (ρ ◦ ΦT )(x),

and we obtain ρ ◦ ΦT = ψ ◦ ΦS ∈ 〈S〉func.
The last claim about the intersection of functionally closed sets follows from (a) and (c).

Indeed, F ⊆ 〈F 〉func by (a), and for every S ∈ M we have 〈F 〉func ⊆ 〈S〉func = S by (c) and by
the assumption, hence 〈F 〉func ⊆ F .

Finally, we prove (d). Set F := 〈S〉func. We have F ⊆ 〈F 〉func by (a). To prove the reverse
inclusion, let ρ: KF → K be a function. We need to produce a function ψ: KS → K with

ρ ◦ ΦF = ψ ◦ ΦS . (1.1)

Then ρ ◦ ΦF ∈ 〈S〉func = F , completing the proof. For f ∈ F choose ψf : KS → K with
f = ψf ◦ ΦS . For v ∈ KS define wv: F → K, f 7→ ψf (v). We obtain ψ: KS → K, v 7→ ρ(wv).
Let x ∈ X. Then for every f ∈ F , we have

wΦS(x)(f) = ψf (ΦS(x)) = f(x) = ΦF (x)(f),

so wΦS(x) = ΦF (x). Thus
ψ(ΦS(x)) = ρ(wΦS(x)) = ρ(ΦF (x)),

and (1.1) follows.

The following proposition yields an interpretation of the functional hull as a closure operation.

Proposition 1.9. Let X and K be sets, and S ⊆ KX . Then

〈S〉func =
⋂

F⊆KX ,
F functionally closed,

S⊆F

F.

Proof. This follows from (a), (c), and (d) of Lemma 1.8.

Part (c) of the following theorem contains the connection between separating subsets and
functional hulls.

Theorem 1.10. Let X and K be sets which are not both empty, and let S, T ⊆ KX be sets of
functions X → K.

(a) The equivalence relation ∼T is coarser than ∼S (i.e., x ∼S y implies x ∼T y) if and only
if T ⊆ 〈S〉func.

(b) The equivalence relations ∼S and ∼T coincide if and only if 〈S〉func = 〈T 〉func.

(c) Assume S ⊆ T . Then S is T -separating if and only if T ⊆ 〈S〉func.



6 G. Kemper

Proof. We start with proving (a). Assume that ∼T is coarser than ∼S . Take f ∈ T . We need
to show that f ∈ 〈S〉func. Set I := ΦS(X) ⊆ KS . For v ∈ I, choose x ∈ X with v = ΦS(x). Set
ψ(v) := f(x). This does not depend on the choice of x. Indeed, if v = ΦS(y) for a y ∈ X, then
for every g ∈ S we have

g(x) = ΦS(x)(g) = ΦS(y)(g) = g(y),

so f(x) = f(y) by the assumption that ∼T is coarser than ∼S . If K = ∅, then automatically
I = KS . Otherwise, we can extend ψ from I to KS and obtain a function ψ: KS → K. By
construction we have ψ ◦ ΦS = f , so indeed f ∈ 〈S〉func.

Now assume T ⊆ 〈S〉func and take x, y ∈ X with x ∼S y. Thus ΦS(x)(f) = f(x) = f(y) =
ΦS(y)(f) for f ∈ S, so

ΦS(x) = ΦS(y). (1.2)

Now let f be a function from T . By assumption, f = ψ ◦ΦS with ψ: KS → K. With (1.2), this
implies f(x) = f(y). So x ∼T y.

To prove (b), observe that by Lemma 1.8(a), (c) and (d), the condition T ⊆ 〈S〉func is
equivalent to 〈T 〉func ⊆ 〈S〉func. Therefore part (b) follows from (a).

To prove (c), assume that S ⊆ T is T -separating. Then ∼S and ∼T coincide, so T ⊆ 〈S〉func

by (a). Conversely, if T ⊆ 〈S〉func, then by Lemma 1.8(c) and (d) we obtain 〈S〉func ⊆ 〈T 〉func ⊆
〈S〉func. By (b), this implies the coincidence of ∼S and ∼T , so S is T -separating.

In almost every algebraic theory, the question arises whether subobjects of finitely generated
objects are again finitely generated. For example, the answer is “yes” in the theory of field
extensions and of vector spaces, but “in general no” in the theory of commutative algebras and
of modules. The following result implies that in the theory of functionally closed sets, subobjects
of finitely generated objects are indeed finitely generated.

Corollary 1.11. Let X and K be sets, S ⊆ KX a set of functions, and F ⊆ 〈S〉func a subset
of the functional hull of S. If F is functionally closed, then there exists a subset T ⊆ F of
cardinality at most the cardinality of S, such that F = 〈T 〉func.

Proof. First the corollary is verified for the trivial case K = X = ∅ by some brain-twisting.
Consider the general case. By Theorem 1.10(a), the equivalence relation ∼F induced by F is
coarser than ∼S . By Proposition 1.3, there exists T ⊆ KX of cardinality at most the cardinality
of S, such that T induces ∼F . By Theorem 1.10(b), this implies 〈T 〉func = 〈F 〉func, so the result
follows from the closedness of F .

2 Finiteness

It is known that subalgebras of finitely generated algebras need not be finitely generated. An
example of this phenomenon is given in Example 2.3. The following theorem provides a first
indication that separating subsets are better behaved than generating subsets. In the context
of this paper, the main application is the case where A is the ring of polynomial functions on a
finite-dimensional vector space V or the ring of regular functions on an affine variety X, and F
is the invariant ring of a group acting on V or on X. This special case of the theorem can be
found in Derksen and Kemper [1, Theorem 2.3.15].

Theorem 2.1. Let X be a set, K a Noetherian commutative ring with unity, A ⊆ KX a finitely
generated subalgebra of KX , and let F ⊆ A be subset. Then there exists a finite subset S ⊆ F
which is F -separating.

Proof. The proof is amazingly simple. Consider the natural projections π1, π2: X ×X → X and
define

ϕi: KX → KX×X , f 7→ f ◦ πi (i = 1, 2).

These are homomorphisms of K-algebras. We have A = K[g1, . . . , gm] with gi ∈ KX . Let
B ⊆ KX×X be the subalgebra generated by all ϕi(gj). Then B is Noetherian, and ϕi(A) ⊆ B for
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i = 1, 2. Let I ⊆ B be the ideal generated by all ϕ1(f)− ϕ2(f), f ∈ F . Since B is Noetherian,
there exist f1, . . . , fn ∈ F such that I is generated by ϕ1(fi)−ϕ2(fi) (i = 1, . . . , n) as an ideal in
B. We claim that S := {f1, . . . , fn} is F -separating. Indeed, take x, y ∈ X with fi(x) = fi(y) for
all i = 1, . . . , n. Let f ∈ F be arbitrary. Since ϕ1(f)− ϕ2(f) lies in I, there exist g1, . . . , gn ∈ B
such that

ϕ1(f)− ϕ2(f) =
n∑

i=1

gi (ϕ1(fi)− ϕ2(fi)) .

Evaluating this at (x, y) ∈ X ×X yields

f(x)− f(y) =
n∑

i=1

gi(x, y) (fi(x)− fi(y)) = 0,

so f(x) = f(y). This completes the proof.

Note that the proof is highly inconstructive. Thus the following problem remains open.

Problem 2.2. Let G be an affine algebraic group over a field K acting on an affine variety X
defined over the same field by a morphism G × X → X. Compute a finite, K[X]G-separating
set.

This problem was solved by the author [7] for the case that G is reductive. The following
example illustrates Theorem 2.1

Example 2.3. LetK be an infinite field and let A = K[x, y] be the algebra of polynomial functions
on X = K2. Then the subalgebra

F := K + x ·A = K[x, xy, xy2, xy3, . . .]

is not finitely-generated. In fact, if F were finitely generated, it would be Noetherian and therefore
one could choose a finite subset B of M := {xyi | i ∈ N0} such that B generates the F -ideal
〈M〉F generated by M. But this is not the case. However, Theorem 2.1 predicts that F has a
finite separating subset. Indeed, it is easy to verify that

S = {x, xy}

is F -separating. /

It would be even nicer if in Theorem 2.1 the hypothesis that A be finitely generated as an
algebra could be weakened to saying that A should have a finite separating subset. However, this
is not true, as the following example shows.

Example 2.4. Let K be an infinite commutative ring with unity, n a positive integer, X = Kn,
and A = KX . The polynomial functions x1, . . . , xn form a finite, A-separating set. But it is easy
to see that the subset

F = {f ∈ KX | f has finite image}

has no finite, separating subset. Note that F is itself an algebra. /

This example also shows that there exist subalgebras of KX which have no finite separating
subset.

3 Finite groups

The finiteness result in Theorem 2.1 is highly inconstructive. In contrast, we will get a completely
constructive procedure for finding separating invariants of finite groups. This procedure only
requires arithmetic operations in a finitely generated algebra, which in the standard case is a
polynomial algebra. We consider the following situation.
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Throughout this section, let X be a set and let K be an integral domain. Let G be a group
acting on X. A G-action on KX by automorphisms of K-algebras is given by

σ(f) = f ◦ σ−1 for σ ∈ G, f ∈ KX .

Let F ⊆ KX be a subset, and write

FG := {f ∈ F | σ(f) = f for all σ ∈ G} .

We do not assume that F is closed under the G-action. Moreover, let {f1, . . . , fn} ⊆ F be an
F -separating subset. We assume that the G-orbits of all fi are finite. Consider the subalgebra
A := K [σ(fi) | σ ∈ G, i ∈ {1, . . . , n}] ⊆ KX generated by all σ(fi), and assume that

AG ⊆ F. (3.1)

Choose a ring extension L of K such that L is an integral domain and free of rank at least n
(the rank may be infinite) as a K-module. Let U be a K-basis of L, and let u1, . . . , un ∈ L be
linearly independent over K. Form the set

M :=

{
n∑

i=1

ui ⊗ σ(fi)

∣∣∣∣∣σ ∈ G
}
⊆ L⊗K A,

which is finite. Introducing an indeterminate T , we can form the polynomial

g(T ) =
∏

m∈M

(T −m) ∈ (L⊗K A)[T ].

Readers might wish to look at Remark 3.2 now, where the standard situation is described and
some generalizations are discussed. Write

g(T ) = T |M | +
|M |∑
i=1

(∑
u∈U

u⊗ ai,u

)
· T |M |−i

with ai,u ∈ A, and form the finite set

S := {ai,u | i ∈ {1, . . . , |M |}, u ∈ U} \K ⊆ A.

Theorem 3.1. In the above situation, S is an FG-separating subset of FG. In fact, if two points
x, y ∈ X satisfy f(x) = f(y) for all f ∈ S, then there exists σ ∈ G such that

f(y) = f (σ(x)) for all f ∈ F. (3.2)

Proof. We let G act trivially on L and on the indeterminate T . Then M is G-stable, so g(T ) is
G-invariant. This implies that all ai,u lie in AG. Therefore by (3.1), they lie in FG, so S ⊆ FG.

Let x, y ∈ X such that ai,u(x) = ai,u(y) for all i and u. We need to show (3.2), and that
f(x) = f(y) for all f ∈ FG. By assumption,∏

m∈M

(T −m(x)) =
∏

m∈M

(T −m(y)),

where x and y are always substituted into the second tensor factor. This is a polynomial identity
in L[T ]. Since L is an integral domain and

∑n
i=1 ui ⊗ fi ∈M , there exists a σ ∈ G with

n∑
i=1

uifi(y) =
n∑

i=1

uiσ(fi)(x).

With the linear independence of u1, . . . , un, this yields

fi(y) = σ(fi)(x) = fi

(
σ−1(x)

)
for all i = 1, . . . , n.
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Since the fi are F -separating, this implies (3.2). Now let f ∈ FG be an invariant in F . Then (3.2)
yields

f(y) = f
(
σ−1(x)

)
= σ(f)(x) = f(x).

This completes the proof.

Remark 3.2. The standard situation to which Theorem 3.1 applies is the following. Let K be
an infinite field and let X = V be an n-dimensional vector space. Assume that G is a finite
group acting on V by linear or affine transformations. Let F = K[V ] = K[x1, . . . , xn] be the
ring of polynomial functions on V , so we can put fi = xi. Then F is closed under the G-action,
and (3.1) is satisfied. The standard choice for L is a polynomial ring L = K[U ], so we can choose
U = {U i | i ∈ N0} and set ui := U i−1. Then L⊗K A = F [U ], and

g(T ) =
∏
σ∈G

(
T −

n∑
i=1

σ(xi)U i−1

)
∈ F [U, T ]

(assuming G acts faithfully). The separating set S is obtained by regarding g(T ) as a polynomial
in T and U and extracting all coefficients. The additional statement (3.2) tells us that FG sepa-
rates all G-orbits, since F separates all points. The setting of Theorem 3.1 allows generalizations
in various directions, and any combination of these generalizations:

(1) K may be an integral domain instead of a field.

(2) X may be an affine variety with a G-action by morphisms, in which case F would be chosen
to be the ring of regular functions.

(3) L may be chosen as a field extension of K of degree at least n. This may drastically reduce
the number of coefficients ai,u going into the separating set S. The cost of multiplying out
the factors of g(T ) may also be reduced substantially.

(4) F may be the invariant ring K[x1, . . . , xn]H of a subgroup H ⊆ G of finite index (where
G itself need not be finite). Then in general F is not closed under the G-action, but (3.1)
is satisfied, and each element of F has a G-orbit of length at most [G : H] (= the index
of H in G) elements. If G is finite and we have a chain of subgroups, we may thus
apply Theorem 3.1 successively to find FG-separating invariants. Walking along a chain of
subgroups may decrease the cost of the calculations dramatically. /

Example 3.3. This is a continuation of Example 1.5, so G is the cyclic group of order 3 generated
by a primitive third root of unity in K. If we take L = K[U ] to be a polynomial ring, we get

g(T ) = T 3 − (x+ yU)3 = T 3 − x3 − 3x2yU − 3xy2U2 − y3U3,

so by Theorem 3.1, the set {x3, x2y, xy2, y3} is K[x, y, z]G-separating. This set is also generating,
so nothing is gained. However, if K has an element a which is not a square in K, we can choose
L = K(

√
a) and u1 = 1, u2 =

√
a, and now get

g(T ) = T 3 − (x3 + 3axy2)− (3x2y + ay3)
√
a,

so the smaller separating set

S = {x3 + 3axy2, 3x2y + ay3}

emerges. /

By a simple count of the elements in the separating set produced by Theorem 3.1, we get an
upper bound for the necessary size of a separating set. To formulate it, we write

γsep(F ) := inf {n| there exists a finite F -separaring set of size n} ∈ N0 ∪ {∞}

for any set F ⊆ KX , where we set inf(∅) := ∞.
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Corollary 3.4. Assume the situation and notation of Theorem 3.1.

(a) We have

γsep(FG) 6
|M |(|M |+ 1)

2
· γsep(F )− |M |(|M | − 1)

2
.

(b) If there exists a ring extension L of K which is an integral domain and free of rank γsep(F )
over K, then

γsep(FG) 6 |M | · γsep(F ).

If G is finite, then |M | 6 |G|.

Example 3.5. Let G be the cyclic group generated by a primitive m-th root of unity in K, acting
by scalar matrices on V = Kn. By Corollary 3.4, there exists a K[x1, . . . , xn]G-separating subset
of size at most m(m+ 1)/2 · n−m(m− 1)/2 or even at most m · n, depending on the case. (In
fact, the real size will be m(n− 1) + 1 or n, see Example 3.3). In contrast, a minimal generating
subset of K[x1, . . . , xn]G has size

γ
(
K[x1, . . . , xn]G

)
=
(
n+m− 1

m

)
,

which has degree m as a polynomial in n and thus becomes drastically bigger than the bounds
for separating sets. We see that even in the simplest case of cyclic groups, separating invariants
are much nicer than generating ones. /

We now look at degrees, but in a generalized sense. Assume that A ⊆ KX is a filtered algebra,
i.e., a subalgebra of KX with K-submodules Ad ⊆ A (d ∈ N0) such that

(i) Ad ⊆ Ad+1 for d ∈ N0,

(ii) f · g ∈ Ai+j for f ∈ Ai and g ∈ Aj , and

(iii) A =
⋃

d∈N0
Ad.

We call A finitely filtered if additionally

(iv) all Ad are finitely generated as K-modules.

If f ∈ Ad, we say that f has degree at most d. Notice that every subalgebra B ⊆ A is filtered by
setting Bd := B ∩Ad (but if K is not Noetherian, B need not be finitely filtered even if A is).

Example 3.6. If A = K[f1, . . . , fn] is finitely generated as an algebra, a finite filtration is obtained
by taking Ad to be the K-submodule of A generated by

Md =
{∏d

i=1 gi

∣∣∣ gi ∈ {1, f1, . . . , fn}
}
.

This filtration depends on the choice of the generators fi. /

If A is a filtered algebra, we define

βsep(A) := inf {d ∈ N0 |there exists S ⊆ Ad which is finite and A-separating} ∈ N0 ∪ {∞},

where again we set inf(∅) := ∞. In other words, βsep(A) is the smallest number d such that
there exist finitely many A-separating elements of degree at most d. In comparison, the “usual”
beta-number β(A) is defined by substituting “separating” by “generating”. Also note that any
grading on A leads to a filtration by taking Ad to be the sum of all homogeneous parts of degree
up to d. Then our definitions of β and βsep coincide with the ones for the graded case.

We say that A is G-filtered if σ(f) ∈ Ad for every σ ∈ G and f ∈ Ad.
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Example 3.7. (a) If A is a finitely generated algebra and G is finite, we can always substitute
a generating subset of A by the union of the G-orbits of the generators. With these
new generators, we obtain a finitely G-filtered algebra B by using the filtration given in
Example 3.6. This possibly enlarges A and may change the original filtration of A. In the
case that A = K[V ] with V a KG-module, we get the usual filtration by degree.

(b) If G is an affine algebraic group and X a G-variety over an algebraically closed field K,
then X can be embedded G-equivariantly into a G-module V (see Derksen and Kemper [1,
Lemma A.1.9], or Derksen and Kemper [2, Section 1.1] for an algorithmic version). This
yields a G-equivariant epimorphism π: K[V ] = K[x1, . . . , xn] → K[X]. The π(xi) generate
K[X] as a an algebra, and the filtration formed with these generators as in Example 3.6
makes K[X] into a finitely G-filtered algebra. /

The second corollary of Theorem 3.1 is a generalization of Noether’s degree bound, but for
separating invariants.

Corollary 3.8. Let A ⊆ KX be a G-filtered algebra, and let H ⊆ G be a subgroup of finite index.
Then

βsep

(
AG
)

6 [G : H] · βsep

(
AH
)
.

Proof. Let B = AH . We may assume that d := βsep (B) is finite, so there exists a subset
{f1, . . . , fn} ⊆ Bd = B ∩ Ad which is B-separating. The G-orbit of each fi lies in Ad and has
length at most [G : H]. With L := K[U ] a polynomial ring, the set

M :=
{∑n

i=1 σ(fi)U i−1
∣∣σ ∈ G} ⊆ A[U ]

has at most [G : H] elements. All coefficients of

g(T,U) =
∏

m∈M

(T −m) ∈ A[U, T ]

lie in A|M |d. By Theorem 3.1, these coefficients form an AG-separating subset. So βsep

(
AG
)

6
|M |d, which completes the proof.

In the case that K is a field, the last statement of the following corollary appeared in Derksen
and Kemper [1, Corollary 3.9.14].

Corollary 3.9 (Noether’s bound for separating invariants). Let K be an integral domain, G ⊆
GLn(K) a linear group, and H ⊆ G a subgroup of finite index. Let A = K[x1, . . . , xn] be the ring
of polynomial functions on Kn. Then

βsep

(
AG
)

6 [G : H] · βsep

(
AH
)
.

In particular, if G is finite, then
βsep

(
AG
)

6 |G|,

i.e., there exist homogeneous invariants of degree at most |G| which form an AG-separating set.

Proof. The standard filtration by degree makes A into a G-filtered algebra. Thus Corollary 3.8
applies and yields the first bound. A is generated in degree 1, so βsep(A) = 1. Thus the second
bound is the special case H = {1}. If the separating set obtained from Corollary 3.8 is not
homogeneous (in fact, it is), it can be substituted by the set of all homogeneous components of
all its elements.

What is remarkable about Corollary 3.9 is that it is independent of the characteristic of K.
In this respect it contrasts strongly with the corresponding theorem about generating invariants,
which requires that K is a field and char(K) does not divide |G| (see Noether [9], Fleischmann [5],
Fogarty [6], or Derksen and Kemper [1, Section 3.8]). In fact, the situation about generating
invariants is so bad that if char(K) divides |G|, there exists no upper bound for β

(
AG
)

which
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only depends on |G| (see [1, Section 3.9] and the references given there). Let me also remark
that, to the best of my knowledge, for relative Noether-bound

β
(
AG
)

6 [G : H] · β
(
AH
)
,

we only have proofs for the cases that |G| is invertible in K, or H normal and [G : H] invertible
in K (both by Sezer [10]). It is widely believed that the relative Noether-bound holds whenever
[G : H] is invertible in K.
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