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Abstract

Let G be an affine algebraic group acting on an affine variety X. We present an algorithm
for computing generators of the invariant ring K[X]G in the case where G is reductive. Further-
more, we address the case where G is connected and unipotent, so the invariant ring need not
be finitely generated. For this case, we develop an algorithm which computes K[X]G in terms
of a so-called colon-operation. From this, generators of K[X]G can be obtained in finite time
if it is finitely generated. Under the additional hypothesis that K[X] is factorial, we present
an algorithm that finds a quasi-affine variety whose coordinate ring is K[X]G. Along the way,
we develop some techniques for dealing with non-finitely generated algebras. In particular, we
introduce the finite generation locus ideal.

Introduction

Throughout this article, G will be an affine algebraic group over an algebraically closed field K.
By a G-variety we understand an affine variety X over K with a G-action given by a morphism
G×X → X. The ring of regular functions on X is denoted by K[X]. G acts on K[X] by

σ(f) = f ◦ σ−1

for σ ∈ G and f ∈ K[X]. The invariant ring is

K[X]G := {f ∈ K[X] | σ(f) = f for all σ ∈ G}.

Nagata [19] showed that K[X]G is finitely generated as a K-algebra if G is reductive, i.e., the trivial
group is the only connected, unipotent, normal subgroup of G. On the other hand, Popov [21]
showed that if G is not reductive, then there exists a G-variety X such that K[X]G is not finitely
generated. Moreover, Nagata [20] showed that if X is normal, then K[X]G is always isomorphic to
the coordinate ring K[U ] of a quasi-affine variety U over K, even if K[X]G is not finitely generated.
Several problems arise from these facts:

(1) Find an algorithm that constructs generators of K[X]G for G reductive.

(2) Find an algorithm that decides whether K[X]G is finitely generated for G non-reductive.

(3) Find an algorithm that constructs generators of K[X]G if it is finitely generated.

(4) Find an algorithm that constructs a quasi-affine variety U with K[X]G ∼= K[U ] (in the case
that X is normal).
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In the case that K has characteristic 0, a solution for the first problem was given by the first
author [1]. (More precisely, the article [1] deals with the case that G is linearly reductive.) The
second author gave a solution of the first problem in the case that X = An(K) is affine n-space
and the action of G is linear [13]. The third problem was solved by van den Essen [4] for G = Ga

being the additive group and K being of characteristic 0 (see Section 3.1.1 of this paper). Van den
Essen’s algorithm terminates after finitely many steps if and only if K[X]Ga is finitely generated.

In the first and last section of this paper, we do the following:

• We give a complete solution to the first problem (Algorithm 1.7). An optimized algorithm is
given for the case that X is normal and G is connected (Algorithm 1.10).

• We give a new algorithm for computing K[X]G in the case that G = Ga is the additive group
and X is irreducible (see Section 3.1.2). This algorithm works in arbitrary characteristic. As
Van den Essen’s algorithm, our algorithm first finds an f ∈ K[X]Ga \ {0} and finitely many
generators of the localization K[X]Ga

f . This is used for computing generators of K[X]Ga in
a second step. If the invariant ring is not finitely generated, this second step continues to
produce generating invariants forever.

• We extend the algorithm for additive group invariants to the case where G is connected and
unipotent, and X is irreducible (Algorithm 3.8). The algorithm has the same nature as the
one for the additive group. Thus we get a solution of the third problem for this case.

• We find an algorithm for constructing a quasi-affine variety U with K[X]G ∼= K[U ] in the case
that G is connected and unipotent, and K[X] is factorial (Algorithm 3.9). The isomorphism
is given explicitly. This algorithm always terminates after finitely many steps. Thus we solve
the fourth problem for this case.

• We develop some ideas how the third problem can be attacked in general (Section 3.3).

We leave it to others to make any progress on the second problem. The middle section of this paper
deals with non-finitely generated algebras. In the context of this paper, this prepares the ground
for the last section, but we believe that the following results from the middle section are of more
general interest:

• We introduce “colon-operations” (R : a)S and (R : a∞)S and give algorithms for computing
them in the case that R ⊆ S are finitely generated algebras over a field and a is an ideal of
R (see Section 2.1). The coordinate ring of an irreducible, quasi-affine variety appears as a
special case (see Lemma 2.3).

• We prove that for a subalgebra R of a finitely generated domain over a field, there always
exists f ∈ R \{0} such that Rf is finitely generated (Proposition 2.8). We also prove that the
set of all these f ’s, together with 0, forms an ideal, the finite generation locus ideal.

• We give a constructive version of Grothendieck’s generic freeness lemma (see Theorem 2.14
and Algorithm 2.15).

• We give an algorithm for computing the intersection of a finitely generated domain over a
field and the field of fractions of a subalgebra (Algorithm 2.17). This algorithm addresses the
original version of Hilbert’s fourteenth problem. Our algorithm terminates after finitely many
steps if and only if the intersection is finitely generated.

Acknowledgments. This work was initiated during a visit of the second author to the University
of Michigan. The second author thanks the first one for his hospitality. Both authors thank Tobias
Kamke for carefully reading the manuscript and pointing out some errors to us. We also thank Frank
Grosshans for sending us his nice paper [6] and thereby bringing a result of van der Kallen [10] to
our attention.
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1 Invariants of reductive groups

In this section we give algorithms for computing invariant rings of reductive groups acting on affine
varieties. The assumption on reductivity of G is not needed in Section 1.1.

1.1 Embedding into a linear space

If X = An(K) is affine n-space and the action is linear, we say that X is a G-module. We usually
use letters like V or W for G-modules. A G-module is given by a morphism G → GLn(K) of
algebraic groups.

Our first goal is to embed an arbitrary G-variety X equivariantly into a G-module V . The idea
for this is simple and standard. Since the G-action on K[X] is locally finite, there exists a finite-
dimensional G-stable vector space W ⊆ K[X] which generates K[X] as a K-algebra. So we obtain
a G-equivariant epimorphism from the symmetric algebra S(W ) onto K[X]. Since S(W ) = K[W ∗],
V = W ∗ (the dual of W ) is the desired G-module. However, for turning this rough idea into an
algorithm, we have to work out quite a few details.

Before we can even start to formulate algorithms, we need to specify the form of the input data.

Convention 1.1. We assume that G and X are given by the following data:

(a) generators of a radical ideal J ⊂ K[t1, . . . , tm] in a polynomial ring such that J defines G as
an affine variety in Km;

(b) generators of a radical ideal I ⊆ K[x1, . . . , xn] in another polynomial ring such that I defines
X as an affine variety in Kn;

(c) polynomials g1, . . . , gn ∈ K[t1, . . . , tm, x1, . . . , xn] such that for a point (ξ1, . . . , ξn) ∈ X and
a group element σ = (γ1, . . . , γm) ∈ G we have

σ(ξ1, . . . , ξn) =
(
g1(γ, ξ), . . . , gn(γ, ξ)

)
,

where we write (γ) for (γ1, . . . , γm) etc.

We are now ready to formulate our first algorithm.

Algorithm 1.2 (Embedding X into a G-module V ).

Input: An affine algebraic group G and a G-variety X given according to Convention 1.1.

Output: Polynomials ai,j ∈ K[t1, . . . , tn] (i, j ∈ {1, . . . , r}) such that

G→ GLr(K), (γ1, . . . , γm) 7→

a1,1(γ) · · · a1,r(γ)
...

...
ar,1(γ) · · · ar,r(γ)


defines a G-module V = Kr, and polynomials h1, . . . , hr ∈ K[x1, . . . , xn] such that

X → V, (ξ1, . . . , ξn) 7→
(
h1(ξ), . . . , hr(ξ)

)
is G-equivariant and injective.

(1) Compute Gröbner bases GI and GJ of I and J with respect to arbitrary monomial orderings
on K[x1, . . . , xn] and K[t1, . . . , tm].

(2) Substitute each gi by its normal form NFGI∪GJ
(gi). (This means that whenever a monomial

of gi is divisible by a leading monomial of an element of GI or GJ , the corresponding reduction
should be performed.)
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(3) Let C ⊆ K[x1, . . . , xn] be the set of all coefficients occurring in the gi considered as polynomials
in t1, . . . , tm.

(4) Select a maximal K-linearly independent subset {h1, . . . , hr} ⊆ C.

(5) For i = 1, . . . , r, form

h̃i := NFGI∪GJ
(hi(g1, . . . , gn)) ∈ K[t1, . . . , tm, x1, . . . , xn].

(6) For i = 1, . . . , r, find ai,1, . . . , ai,r ∈ K[t1, . . . , tm] such that

h̃i =
r∑

j=1

ai,jhj . (1.1)

This can be done by viewing (1.1) as an equation in K(t1, . . . , tm)[x1, . . . , xn], comparing
coefficients in the x-variables, and solving the resulting linear system with coefficients in
K(t1, . . . , tm). In fact, there exists a unique solution, which lies in K[t1, . . . , tm]r.

Proof of correctness of Algorithm 1.2. We first remark that converting the gi into normal form
(Step 2) does not change their properties given in Convention 1.1(c). We will assume that gi

are in normal form.
Throughout the proof let σ = (γ1, . . . , γm) and τ = (η1, . . . , ηm) be elements from G, and write

στ = (ζ1, . . . , ζm) for their product. For (ξ1, . . . , ξn) ∈ X we have(
σ−1(xi + I)

)
(ξ1, . . . , ξn) = (xi + I) (σ(ξ1, . . . , ξn)) = gi(γ, ξ),

so
σ−1(xi + I) = gi(γ, x) + I. (1.2)

We can write

gi =
l∑

j=1

hi,jfj

with f1, . . . , fl ∈ K[t1, . . . , tm] pairwise distinct monomials in normal form w.r.t. GJ and hi,j ∈
K[x1, . . . , xn] in normal form w.r.t. GI . With this, (1.2) becomes

l∑
j=1

fj(γ)(hi,j + I) = σ−1(xi + I). (1.3)

Let

W :=
n∑

i=1

l∑
j=1

K · (hi,j + I)

be the subspace of K[X] generated by the residue classes of all hi,j . With the hi selected as in
Step 4, a K-basis of W is given by h1 + I, . . . , hr + I. From (1.3) with σ being the identity element,
we see that xi + I ∈ W for all i, so K[X] is generated by h1 + I, . . . , hr + I as a K-algebra. This
implies that the map X → Kr = V given by the hi is injective.

Applying τ−1 to (1.3) and then applying (1.3) with στ in the place of σ yields

l∑
j=1

fj(γ) · τ−1(hi,j + I) = τ−1
(
σ−1(xi + I)

)
=

l∑
j=1

fj(ζ)(hi,j + I) ∈W.

Since the fj are linearly independent as functions on G, this shows that all τ−1(hi,j + I) lie in W ,
so W is G-stable. To see that the ai,j from Step 6 exist, choose a set B ⊆ K[x1, . . . , xn] such that
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the h+ I with h ∈ B together with all hi + I form a K-basis of K[X]. Then for i ∈ {1, . . . , n} we
can write

h̃i + I =
r∑

j=1

ai,jhj +
s∑

j=1

a′i,jh
′
j + I

with h′j ∈ B and ai,j , a
′
i,j ∈ K[t1, . . . , tm]. As h̃i is in reduced form w.r.t. GJ , the same holds for all

ai,j and a′i,j . The definition of h̃i, Equation (1.2) and the G-stability of W imply

h̃i(γ1, . . . , γm, x1, . . . , xn) + I = σ−1(hi + I) ∈W,

so
r∑

j=1

ai,j(γ)hj +
s∑

j=1

a′i,j(γ)h
′
j + I ∈W

for all σ = (γ1, . . . , γm) ∈ G. Since W is generated by the hi + I, it follows that all a′i,j(γ) are zero,
so a′i,j ∈ J . Since they are in normal form, a′i,j = 0 for all j, so h̃i + I =

∑r
j=1 ai,jhj + I. Since

all polynomials in this equation are in reduced form w.r.t. GI , it follows that this is an equality
in K[t1, . . . , tm, x1, . . . , xn]. So the ai,j from Step 6 indeed exist. Their uniqueness follows from
the fact that h1, . . . , hr are linearly independent over K, thus also over the rational function field
K(t1, . . . , tm).

Next we show that the ai,j define a G-module V = Kr. Indeed, we have

r∑
j=1

ai,j(ζ)(hj + I) = (στ)−1(hi + I) = τ−1

(
r∑

k=1

ai,k(γ)(hk + I)

)
=

r∑
k=1

ai,k(γ)
r∑

j=1

ak,j(η)(hj + I),

so ai,j(ζ) =
∑r

k=1 ai,k(γ)ak,j(η) by the linear independence of the hj+I. Finally, the map Φ:X → V
given in Algorithm 1.2 is G-equivariant, since for all (ξ1, . . . , ξn) ∈ X we have

Φ
(
σ(ξ)

)
=
(
h̃1(γ, ξ), . . . , h̃r(γ, ξ)

)
=

a1,1(γ) · · · a1,r(γ)
...

...
ar,1(γ) · · · ar,r(γ)

 · Φ(ξ) = σ
(
Φ(ξ)

)
.

This completes the proof.

1.2 Inseparable closure

For R an algebra over a field K of characteristic p > 0 and A ⊆ R a subalgebra, we write

p
√
A := {g ∈ R | gp ∈ A}

and call this the p-th root of A in R. Moreover,

Â := {g ∈ R | gq ∈ A for some p-power q}

is called the inseparable closure of A in R. p
√
A and Â are clearly A-modules and K-algebras. The

following remark sheds some light on the importance of the inseparable closure to invariant theory.

Remark 1.3. Suppose that G is a reductive group over an algebraically closed field K of positive
characteristic, and V is a G-module. Let A ⊆ K[V ]G be a separating subalgebra. By defini-
tion, this means that A has the same capabilities of separating G-orbits as K[V ]G (see Derksen
and Kemper [2, Definition 2.3.8]). Since the natural map V → Specmax

(
K[V ]G

)
is surjective,

this implies that the map Specmax

(
K[V ]G

)
→ Specmax (A) is injective. Assume further that A
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is generated by homogeneous invariants. Then Theorem 2.3.12 of [2] implies that K[V ]G is inte-
gral over A. By van der Kallen [10, Sublemma A.5.1] (for an expanded version of the proof see
http://www.math.uu.nl/people/vdkallen/errbmod.pdf), the integrality and the injectiveness of the
corresponding morphism imply that K[V ]G ⊆ Â. Here the inseparable closure can and will be
understood to be formed in K[V ]. Since K̂[V ]G = K[V ]G is always true, we conclude

Â = K[V ]G. (1.4)

(In fact, the converse is also true: If a subalgebra A ⊆ K[V ]G satisfies (1.4), then it is separating.)
The conclusion (1.4) is an improvement of [2, Theorem 2.3.12], which says that K[V ]G is obtained
from A by first taking the normalization and then the inseparable closure. This improvement only
holds in positive characteristic. Using (1.4), we also get an improvement to the algorithm given by
Kemper [13] for computing K[V ]G. In fact, Algorithm 1.9 of [13] first calculates the normalization
(Step 2) and then the inseparable closure (Step 3). Thus in positive characteristic, Step 2 can in
fact be omitted. /

In Kemper [13, Algorithm 4.2] an algorithm is given for computing p
√
A in the case that R is a

polynomial ring. We need to modify this algorithm substantially to make it suitable for the case
that R is any reduced finitely generated K-algebra.

Algorithm 1.4 (p-th root of a subalgebra).

Input: Polynomials h1, . . . , hl ∈ K[x1, . . . , xn] over a perfect field K of characteristic p > 0 such
that I = (h1, . . . , hl) is a radical ideal, and polynomials f1, . . . , fm ∈ K[x1, . . . , xn] defining a
subalgebra A := K[f1 + I, . . . , fm + I] ⊆ R := K[x1, . . . , xn]/I.

Output: Polynomials g1, . . . , gr ∈ K[x1, . . . , xn] such that

p
√
A =

r∑
i=1

A · (gi + I).

(1) Let F be a free K[x1, . . . , xn]-module of rank (pm + lpn + 1) with basis vectors ei1,...,im

(iν ∈ {0, . . . , p− 1}), e(j)i1,...,in
(j ∈ {1, . . . , l}, iν ∈ {0, . . . , p− 1}), and e(0).

(2) Form the K[x1, . . . , xn]-module M ⊆ F formed by all

ei1,...,im
+

m∏
ν=1

f iν
ν e(0) (iν ∈ {0, . . . , p− 1})

and

e
(j)
i1,...,in

+
n∏

ν=1

xiν
ν hje

(0) (j ∈ {1, . . . , l}, iν ∈ {0, . . . , p− 1}).

(3) Let K[y1, . . . , yn] be a new polynomial ring and write ϕ for the map K[y1, . . . , yn] →
K[x1, . . . , xn] sending each yi to xp

i . Also use the letter ϕ for the component-wise application
of ϕ to the free module K[y1, . . . , yn]p

m+lpm+1.

(4) Use Algorithm 1.5 below to compute C1, . . . , Cs ∈ K[y1, . . . , yn]p
m+lpm+1 such that the ϕ(Ci)

generate
M ∩K[xp

1, . . . , x
p
n]p

m+lpm+1

as a K[xp
1, . . . , x

p
n]-module.
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(5) With π: K[y1, . . . , yn]p
m+lpm+1 → K[y1, . . . , yn]p

m

the projection on the first pm coordinates,
form

M̃ :=
s∑

i=1

K[y1, . . . , yn] · π(Ci) ⊆ K[y1, . . . , yn]p
m

.

Moreover, form f̃1, . . . , f̃m ∈ K[y1, . . . , yn] from the fi by raising each coefficient of fi to its
p-th power and substituting each xj by yj .

(6) Use Algorithm 1.5 to compute generators s1, . . . , sr of M̃ ∩K[f̃1, . . . , f̃m]p
m

as a module over
K[f̃1, . . . , f̃m] and a matrix (ai,j) ∈ K[y1, . . . , yn]r×s such that

si =
s∑

j=1

ai,jπ(Cj).

(7) For i = 1, . . . , r, let gi ∈ K[x1, . . . , xn] be the (unique) p-th root of

s∑
j=1

ϕ(ai,j) · ϕ
(
C

(0)
j

)
∈ K[xp

1, . . . , x
p
n],

where C(0)
j is the e(0)-component of Cj .

Proof of correctness of Algorithm 1.4. Throughout the proof we write g := g+I ∈ R for the residue
class of a polynomial g ∈ K[x1, . . . , xn]. Take an element

(u) =
p−1∑

i1,...,im=0

ui1,...,imei1,...,im +
l∑

j=1

p−1∑
i1,...,in=1

u
(l)
i1,...,in

e
(l)
i1,...,in

+ u(0)e(0)

from F (with all u’s from K[x1, . . . , xn]). Then (u) ∈M implies

p−1∑
i1,...,im=0

ui1,...,im ·
m∏

ν=1

f iν
ν +

l∑
j=1

p−1∑
i1,...,in=1

u
(l)
i1,...,in

·
n∏

ν=1

xiν
ν hj − u(0) = 0,

so

u(0) =
p−1∑

i1,...,im=0

ui1,...,im
·

m∏
ν=1

fν
iν
. (1.5)

First we show that all gi
p lie in A. All ϕ(Cj) lie inM , and therefore also

∑s
j=1 ϕ(ai,j)ϕ(Cj) ∈M .

The e(0)-component of
∑s

j=1 ϕ(ai,j)ϕ(Cj) is gp
i by Step 7 of the algorithm. Moreover, for all

i1, . . . , im ∈ {0, . . . , p − 1}, the ei1,...,im
-component of

∑s
j=1 ai,jCj is equal to the correspond-

ing component of si by Step 6, and si lies in K[f̃1, . . . , f̃m]. Thus the ei1,...,im -component of∑s
j=1 ϕ(ai,j)ϕ(Cj) lies in K[ϕ(f̃1), . . . , ϕ(f̃m)]. But ϕ(f̃j) = fp

j by the definition of the f̃j , so
from (1.5) we obtain

gi
p =

p−1∑
i1,...,im=0

ui1,...,im ·
m∏

ν=1

fν
iν

with ui1,...,im
elements from K[fp

1 , . . . , f
p
m]. Hence indeed gi

p ∈ A.
Now we show that every element from p

√
A is an A-linear combination of g1, . . . , gr. So take

g ∈ K[x1, . . . , xn] such that g ∈ p
√
A. This means that gp ∈ A ∩ K[x1

p, . . . , xm
p]. So on the one
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hand there exists u(0) ∈ K[xp
1, . . . , x

p
n] with gp = u(0), and on the other hand we have ui1,...,im ∈

K[fp
1 , . . . , f

p
m] (for i1, . . . , im ∈ {0, . . . , p− 1}) such that

u(0) = gp =
p−1∑

i1,...,im=0

ui1,...,im ·
m∏

ν=1

fν
iν
. (1.6)

Indeed, any element of A can be written like this. But this means that there exist polynomials
u

(j)
i1,...,in

∈ K[xp
1, . . . , x

p
n] (for j ∈ {1, . . . , l} and i1, . . . , im ∈ {0, . . . , p− 1}) such that

u(0) −
p−1∑

i1,...,im=0

ui1,...,im
·

m∏
ν=1

f iν
ν =

l∑
j=1

p−1∑
i1,...,in=1

u
(j)
i1,...,in

·
n∏

ν=1

xiν
ν hj . (1.7)

Indeed, any element from I can be written as an expression as on the right hand side of (1.7).
Equation (1.7) implies that the element

(u) =
p−1∑

i1,...,im=0

ui1,...,imei1,...,im +
l∑

j=1

p−1∑
i1,...,in=1

u
(l)
i1,...,in

e
(l)
i1,...,in

+ u(0)e(0)

of F lies in M . Observe that all coefficients of (u) lie in K[xp
1, . . . , x

p
n]. Thus by Step 4 of the

algorithm, (u) lies in the K[xp
1, . . . , x

p
n]-span of the ϕ(Ci). It is convenient to write ui1,...,im =

ϕ(Ui1,...,im) with Ui1,...,im ∈ K[y1, . . . , yn]. Then

p−1∑
i1,...,im=0

Ui1,...,im
· ei1,...,im

∈ M̃

with M̃ as defined in Step 5. But we know that the ui1,...,im really lie in K[fp
1 , . . . , f

p
m], which

implies Ui1,...,im
∈ K[f̃1, . . . , f̃m]. So by Step 6 there exist B1, . . . , Br ∈ K[f̃1, . . . , f̃m] such that

p−1∑
i1,...,im=0

Ui1,...,im · ei1,...,im =
r∑

i=1

Bisi =
r∑

i=1

Bi ·
s∑

j=1

ai,jπ(Cj).

Applying ϕ to this and setting bi := ϕ(Bi) ∈ K[fp
1 , . . . , f

p
m] yields

p−1∑
i1,...,im=0

ui1,...,im
· ei1,...,im

=
r∑

i=1

bi

s∑
j=1

ϕ(ai,j) ·
p−1∑

i1,...,im=0

ϕ(C(i1,...,im)
j )ei1,...,im ,

where C(i1,...,im)
j stands for the ei1,...,im -component of Cj . So for every i1, . . . , im ∈ {0, . . . , p − 1}

we have

ui1,...,im =
r∑

i=1

bi

s∑
j=1

ϕ(ai,j) · ϕ(C(i1,...,im)
j ).

Substituting this into (1.6) yields

gp =
r∑

i=1

bi

s∑
j=1

ϕ(ai,j) ·
p−1∑

i1,...,im=0

ϕ(C(i1,...,im)
j ) ·

m∏
ν=1

fν
iν
.

But ϕ(Cj) ∈M for all j, so we can apply (1.5) and obtain

gp =
r∑

i=1

bi

s∑
j=1

ϕ(ai,j) · ϕ(C(0)
j ) =

r∑
i=1

bigi
p,
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where the last equality follows from Step 7. Since bi ∈ K[fp
1 , . . . , f

p
m] and since K is perfect, there

exist p-th roots of the bi in K[f1, . . . , fm]. Hence there exist b̃i ∈ A with b̃pi = bi. We obtain

gp =
r∑

i=1

b̃pi gi
p =

(
r∑

i=1

b̃igi

)p

.

Since I is a radical ideal, this implies g =
∑r

i=1 b̃igi with b̃i ∈ A. This completes the proof.

The following algorithm is used in Algorithm 1.4. It is a slight extension of Algorithm 7 in
Kemper [11] (see also Kreuzer and Robbiano [14, Section 3.6, Exercise 10 c]).

Algorithm 1.5 (Intersection of a submodule with a subalgebra).

Input: Generators b1, . . . , bl of a submodule M ⊆ K[x1, . . . , xn]r, and polynomials f1, . . . , fm ∈
K[x1, . . . , xn] generating a subalgebra A := K[f1, . . . , fm].

Output: - Generators c1, . . . , cs of M ∩Ar as an A-module;

- if desired, elements C1, . . . , Cs ∈ K[y1, . . . , ym]r with K[y1, . . . , ym] a polynomial ring
such that substituting yi 7→ fi in Ci yields ci;

- if desired, a matrix (ai,j) ∈ K[x1, . . . , xn]s×l such that

ci =
l∑

j=1

ai,jbj (1.8)

for all i ∈ {1, . . . , s}.

(1) Let S := K[x1, . . . , xn, y1, . . . , ym] be a polynomial ring with additional indeterminates
y1, . . . , ym. Form the submodule M̃ of Sr generated by bi (i = 1, . . . , l) and by (fj − yj) · ek

(j = 1, . . . ,m, k = 1, . . . , r), where the ek are the free generators of Sr.

(2) Choose a monomial ordering “>” on Sr such that

xiej > yd1
1 · · · ydm

m ej′

for all i ∈ {1, . . . , n}, j, j′ ∈ {1, . . . , r}, and dk ∈ N.

(3) Compute a Gröbner basis G of M̃ with respect to “>”. If the matrix (ai,j) is desired, keep
track of how each element from G can be represented as an S-linear combination of the bi and
(fj − yj) · ek.

(4) Let C1, . . . , Cs be those elements from G which lie in K[y1, . . . , ym]r, and obtain ci by substi-
tuting yi 7→ fi in Ci.

(5) If the matrix (ai,j) is desired, use the normal form algorithm to express each ci as an S-linear
combination of the elements of G, and then as a linear combination of the bj and (fj −yj) · ek:

ci =
l∑

j=1

ãi,jbj +
m∑

j=1

r∑
k=1

ãi,j,k(fj − yj) · ek (1.9)

with ãi,j , ãi,j,k ∈ S. Then ai,j is obtained by substituting yk 7→ fk in ãi,j .

Proof of correctness of Algorithm 1.5. We only need to prove the correctness of step 5, since ev-
erything else is already contained in Algorithm 7 from Kemper [11]. First, the ci are contained in
M and therefore in M̃ , so the normal form is zero. Hence the ãi,j and ãi,j,k in (1.9) exist. Now
substituting yν 7→ fν in (1.9) yields (1.8).
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Remark 1.6. Algorithm 1.5 can be generalized to arbitrary finitely generated commutative K-
algebras. Suppose that A = K[x1, . . . , xl]/J is a subalgebra of a K-algebra B = K[x1, . . . , xn]/I
with l ≤ n (so I ∩K[x1, . . . , xl] = J), and M is a B-submodule of Br. Consider the quotient map

ϕ : K[x1, . . . , xn]r → Br = K[x1, . . . , xn]r/Ir

and define M = ϕ−1(M). To compute M ∩Ar, note that

M ∩Ar = M ∩ ϕ(K[x1, . . . , xl]r) = ϕ(ϕ−1(M) ∩K[x1, . . . , xl]r) = ϕ(M ∩K[x1, . . . , xl]r).

Generators of M ∩K[x1, . . . , xl]r can be computed using Algorithm 1.5.

We are now ready to present an algorithm for computing generating invariants of a reductive
groups acting on an affine variety. Recall that every reductive group in characteristic 0 is linearly
reductive, so Derksen’s algorithm [1] applies for computing its invariant rings. Therefore we may
assume that the characteristic is positive.

Algorithm 1.7 (Invariants of a reductive group acting on an affine variety).

Input: A reductive algebraic group G over an algebraically closed field K of characteristic p, and
a G-variety X given according to Convention 1.1.

Output: Polynomials f1, . . . , fk ∈ K[x1, . . . , xn] such that the residue classes fi + I ∈ K[X] are
G-invariant and generate K[X]G.

(1) Use Algorithm 1.2 to calculate an equivariant embedding X → V into a G-module V . Let
h1, . . . , hr ∈ K[x1, . . . , xn] be the polynomials by which this embedding is given, and write
K[V ] = K[y1, . . . , yr] with yi indeterminates.

(2) Use Algorithm 1.9 of Kemper [13] to compute generators F1, . . . , Fk ∈ K[y1, . . . , yr] of K[V ]G.
In fact, it is enough if F1, . . . , Fk are homogeneous, separating invariants, as computed by
Algorithm 2.9 of [13], in which case K[V ]G will be the inseparable closure of K[F1, . . . , Fk]
(see Remark 1.3).

(3) For i = 1, . . . , k, set
fi := Fi(h1, . . . , hr) ∈ K[x1, . . . , xn],

and let A ⊆ K[X] be the K-algebra generated by the fi := fi + I ∈ K[X].

(4) Use Algorithm 1.4 to compute p
√
A ⊆ K[X]. Let S be the set of generators of p

√
A returned

by Algorithm 1.4.

(5) For each g ∈ S, test whether g ∈ A (see Remark 1.8). If g /∈ A, set

fk+1 := h, A := K[f1, . . . , kk+1] and k := k + 1.

(6) If in Step 5 all g ∈ S were found to already lie in A, then K[X]G = A and we are done.
Otherwise, go back to Step 4.

Remark 1.8. The membership test in Step 5 of Algorithm 1.7 can be done as follows: With
additional indeterminates t, t1, . . . , tk choose a monomial ordering on K[t, t1, . . . , tk, x1, . . . , xn] such
that every monomial in t, t1, . . . , tk is smaller than any xi, and every monomial in t1, . . . , tk is smaller
than t. Compute a Gröbner basis G of the ideal in K[t, t1, . . . , tk, x1, . . . , xn] generated by

g − t, fi − ti (i = 1, . . . , k), and I

with respect to this monomial ordering. Then g ∈ A if and only if G contains a polynomial with
the lead monomial t. This can be viewed as a (very) special case of Algorithm 1.5.
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Proof of correctness of Algorithm 1.7. With ϕ: X → V the map given in Step 1 of the algorithm,
we have a G-equivariant epimorphism

ϕ∗: K[V ] → K[X], F 7→ F ◦ ϕ

of K-algebras, and fi + I, as formed in Step 3, is just the ϕ∗-image of Fi. Thus A = K[f1 +
I, . . . , fk + I], also formed in Step 3, is a subalgebra of K[X]G. The algorithm keeps increasing k
and enlarging A until reaching the inseparable closure Â. In this proof, the letter A will always
denote the subalgebra formed in Step 3.

Since K[X] is a reduced ring, clearly every g ∈ Â is an invariant in K[X]G. Conversely, take
g ∈ K[X]G. Since G is reductive, there exists a p-power s such that gs ∈ ϕ∗

(
K[V ]G

)
(see Mumford

et al. [17, Lemma A.1.2]), so gs = ϕ∗(F ) with F ∈ K[V ]G. Since K[V ]G is the inseparable closure
of K[F1, . . . , Fk], there exists a p-power q with F q ∈ K[F1, . . . , Fk], so

gsq ∈ ϕ∗ (K[F1, . . . , Fk]) = A.

This shows that indeed Â = K[X]G. Since K[X]G is finitely generated as a K-algebra (see
Nagata [19]) and K[X]G = Â by the above, K[X]G is finitely generated as an A-module. This
proves that Algorithm 1.7 terminates after finitely many steps.

Problem 1.9. We are still left with the problem of finding an algorithm that computes AG, where
A is a finitely generated K-algebra which need not be reduced and G is a reductive group acting on
A such that A is locally finite. By Nagata [19], AG is finitely generated in this case.

1.3 Connected groups acting on normal varieties

In this section we consider the case of a connected reductive group G acting on a normal, irreducible
affine variety X. This case is more special than the one dealt with in Algorithm 1.7. But we will
present a simpler and probably faster algorithm for computing K[X]G. The idea for this algorithm
was stimulated by the paper [7] of Hashimoto, which gives an algorithm for computing generating
invariants of a simply connected simple linear algebraic group with a linear action.

Recall that for a reductive group G and a G-module V we can always compute a subalgebra
A ⊆ K[V ]G such that K[V ]G is integral over A. Indeed, the possibly simplest way of doing this
is by computing what Kemper [13] calls the “Derksen ideal” by performing the first two steps of
Algorithm 2.9 in [13] (same as the first three steps in Algorithm 4.1.9 from [2]), and then setting one
set of variables equal to zero in the generators of the Derksen ideal (Step 4 in [2, Algorithm 4.1.9]).
This will yield a set of polynomials {g1, . . . , gs} ⊂ K[V ] which define Hilbert’s nullcone (see [2,
Section 2.4.1 and Remark 4.1.4]). Now use Algorithm 2.7 from [13] to compute homogeneous
invariants f1, . . . , fk ∈ K[V ]G degree by degree until every gi lies in the radical of the ideal in
K[V ] generated by the fj . Then K[V ]G will be integral over K[f1, . . . , fk]. An alternative method
would be to use Algorithm 2.9 from [13] to compute a graded separating subalgebra of K[V ]G.
Then K[V ]G will be integral over this subalgebra (see Lemma 1.3 in [13]). Compared with the first
method outlined above, computing separating invariants involves one additional major Gröbner
basis computation, which is not really necessary for our purposes.

We can now present an algorithm for computing K[X]G for X normal and G connected and
reductive. The algorithm involves the computation of the integral closure of one ring in another,
which will be discussed shortly.

Algorithm 1.10 (Invariants of a connected reductive group acting on a normal variety).

Input: A connected, reductive group G over an algebraically closed field K, and a normal, irre-
ducible G-variety X, given according to Convention 1.1.

Output: Generators of K[X]G as a K-algebra.
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(1) Use Algorithm 1.2 to calculate an equivariant embedding ϕ: X → V into a G-module V .

(2) Construct invariants f1, . . . , fk ∈ K[V ]G such that K[V ]G is integral over K[f1, . . . , fk] (see
the above discussion).

(3) Form the subalgebra A ⊆ K[X]G generated by all fi ◦ ϕ (see Step 3 of Algorithm 1.7).

(4) Use Algorithm 1.12 to compute the integral closure B of A in K[X]. Then

K[X]G = B.

The following lemma will be used in the proof of correctness of Algorithm 1.10. We write G0

for the connected component of an algebraic group G.

Lemma 1.11. Let G be an affine algebraic group over an algebraically closed field K, and let X be
a G-variety. Let A ⊆ K[X]G be a subalgebra such that K[X]G is integral over A. Then K[X]G

0
is

the integral closure of A in K[X].

Proof. We write B for the integral closure of A in K[X]. First take b ∈ B arbitrary. There exists a
monic polynomial F ∈ A[T ] with F (b) = 0. Thus for every σ ∈ G we also have F (σ(b)) = 0. On the
other hand, F has at most finitely many zeros in K[X]. Indeed, this follows from the fact that for
each irreducible component Xi of X, restricting the coefficients of F yields a non-zero polynomial
with only finitely many zeros in K[Xi]. It follows that the G-orbit of b is finite. Therefore the
stabilizer Gb ⊆ G of b has finite index in G, which implies G0 ⊆ Gb. Hence b ∈ K[X]G

0
.

Conversely, take f ∈ K[X]G
0
. Then

F (T ) :=
∏

σ∈G/G0

(T − σ(f)) ∈ K[X]G[T ],

and F (f) = 0. So f is integral over K[X]G and hence also over A. It follows that f ∈ B.

Proof of correctness of Algorithm 1.10. It follows from the reductivity of G that K[X]G is integral
over A. From this, K[X]G = B follows by Lemma 1.11.

The following algorithm for computing the integral closure of one ring in another is mostly drawn
from Vasconcelos [22, Chapter 6].

Algorithm 1.12 (Integral closure).

Input: A prime ideal I ⊆ K[x1, . . . , xn] defining a normal domain B := K[x1, . . . , xn]/I, and
polynomials f1, . . . , fk ∈ K[x1, . . . , xn] defining a subalgebra A = K[f1, . . . , fk] ⊆ B, where
we write fi := fi + I.

Output: Polynomials g1, . . . , gr ∈ K[x1, . . . , xn] such that K[g1, . . . , gr] is the integral closure of A
in B.

(1) With an additional indeterminate t, form the algebra

D := K[f1, . . . , fk, t, tx1, . . . , txn] ⊆ B[t].

(2) Compute h1, . . . , hr ∈ K[x1, . . . , xn, t] such that the hi ∈ B[t] generate the normalization D̃ of
D. This can be done by using de Jong’s algorithm (see de Jong [9] or Derksen and Kemper [2,
Section 1.6]).

(3) For i = 1, . . . , r, obtain gi from by setting t = 0 in hi.
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Proof of correctness of Algorithm 1.12. Since B is a normal domain, the same is true for B[t] (see,
for example, Eisenbud [3, Exercise 4.18]). Therefore D̃ is contained in B[t], which shows that its
generators hi do lie in B[t] rather than just in Q(B)[t], where Q(B) denotes the field of fractions
of B. Consider the map ϕ: B[t] → B of B-algebras given by t 7→ 0. The definition of D implies
ϕ(D) = A. For each h ∈ D̃ we have an equation

hs + d1h
s−1 + · · ·+ dr−1h+ ds = 0

with di ∈ D. Applying ϕ to this yields an integral equation for ϕ(h) over A. If follows that the
gi = ϕ(hi) from Step 3 are integral over A.

Conversely, take g ∈ B arbitrary such that b is integral over A. Then g, seen as an element of
B[t], is integral over D. Moreover, Q(D) = Q(B[t]) by the definition of D, so g ∈ Q(D). It follows
that g ∈ D̃, so there exists a polynomial F such that g = F

(
h1, . . . , hr

)
. Applying ϕ yields

g = ϕ(g) = F (g1, . . . , gr) .

This completes the proof.

Remark 1.13. In Algorithm 1.12 we have assumed that B is normal. We will sketch how to
deal with the more general case where B is a domain which need not be normal. Compute the
normalization B̃ of B using De Jong’s algorithm (see de Jong [9] or Derksen and Kemper [2,
Section 1.6]). Let Ã be the integral closure of A in B̃. Generators of Ã can be computed using
Algorithm 1.12. Find A-module generators h1, . . . , hs of Ã. Define

M = {(a1, . . . , as) ∈ Bs |
s∑

i=1

aihi ∈ B}.

Find g ∈ B \ {0} such that ghi ∈ B for all i. We may identify M with

{(a1, . . . , as, b) ∈ Bs+1 |
s∑

i=1

aihi + b = 0} = {(a1, . . . , as, b) ∈ Bs+1 |
s∑

i=1

aighi + bg = 0}.

SoM can be viewed as a syzygy module, and generators ofM can be computed using Vasconcelos [22,
§1.3] or Derksen and Kemper [2, §1.3] (computing syzygies between elements u1 + I, . . . , ut + I in
B = K[x1, . . . , xn]/I can easily be reduced to computing syzygies between u1, . . . , ut and generators
of I in the polynomial ring K[x1, . . . , xn]). We have

M ∩As = {(a1, . . . , as) ∈ As |
s∑

i=1

aihi ∈ Ã ∩B}.

Define ϕ : M → B by ϕ(a1, . . . , ar) =
∑s

i=1 aihi. Then ϕ(M ∩ As) = Ã ∩B is the integral closure
of A in B. Generators of M ∩As can be computed, using Remark 1.6.

2 Quasi-affine varieties and Hilbert’s fourteenth problem

This section provides some methods for dealing with non-finitely generated algebras.

2.1 The colon operation

For a subset B of a ring, Br will denote the set of all products of r elements from B. We generalize
the notion of a colon ideal as follows.
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Definition 2.1. For a commutative ring S and subsets A,B ⊆ S we define

(A : B)S = {f ∈ S | fB ⊆ A}

and

(A : B∞)S =
∞⋃

r=1

(A : Br)S = {f ∈ S | ∃r fBr ⊆ A}.

Example 2.2. If a and b are ideals of S, then (a : b)S and (a : b∞)S are the usual colon ideals (see
for example Vasconcelos [22, Chapter 2]).

If R is a domain with quotient field Q(R), and f ∈ R \ {0} then

(R : {f}∞)Q(R) = Rf ,

the localization of R with respect to the element f . This generalizes as follows. Suppose that
R = K[X] is the coordinate ring of an irreducible affine variety X. Let Y ⊆ X be a the zero set of
an ideal a ⊆ R. The ring of regular functions on the quasi-affine variety U := X \ Y is denoted by
K[U ].

Lemma 2.3. We have
K[U ] = (R : a∞)Q(R).

Proof. Suppose that f ∈ (R : a∞)Q(R) and p ∈ U . There exists h ∈ a with h(p) 6= 0. We have
g = hsf ∈ R for some nonnegative integer s. So f = h−sg is a regular function on an open
neighborhood of p ∈ U . Since p ∈ U was chosen arbitrarily, we conclude that f ∈ K[U ].

Conversely, suppose that f ∈ K[U ]. We may write a = (a1, . . . , ar). Because K[U ] ⊆ Rai there
exists a nonnegative integer li such that ali

i f ∈ R for all i. Set N = l1 + l2 + · · ·+ lr − r + 1. Then

aNf ⊆ R,

because aN is spanned by monomials ak1
1 a

k2
2 · · · akr

r with k1 + · · ·+ kr = N and the definition of N
implies that ki ≥ li for some i.

If f ∈ a is nonzero, then we have K[U ] ⊆ Rf and

K[U ] = (R : a∞)Q(R) = (R : a∞)Rf
. (2.1)

Note that such a ring of regular functions on a quasi-affine variety is not always finitely generated
over K (see Nagata [20, Chapter V.5] or Winkelmann [23]). Rings of the form (R : a∞)Q(R) are
ideal transforms in the sense of Nagata [20]. Suppose that G is an algebraic group and X is an
affine G-variety. Nagata showed that the invariant ring K[X]G may not be finitely generated [18].
However, he also showed that if X is normal, then the invariant ring K[X]G is isomorphic to some
ideal transform of a finitely generated domain over K [20, Chapter V, Proposition 4]. In other
words, K[X]G can be viewed as K[U ] for some quasi-affine variety U . Later, we will study this in
more detail.

The following lemma is easy to prove:

Lemma 2.4.

(a) If a is an ideal of the ring S, and B ⊆ S then (a : B)S and (a : B∞)S are ideals of S.

(b) If S is an algebra over some field, A ⊆ S is a subalgebra and B ⊆ A, then (A : B∞)S is a
subalgebra of S.
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Suppose that the additive group Ga acts regularly on an irreducible affine variety X. Then Ga

also acts on the coordinate ring S := K[X]. An algorithm for computing the generators of the
invariant ring SGa was given by van den Essen [4]. Van den Essen first constructs a subalgebra
R of the invariant ring, and an element f ∈ R such that SGa = Rf ∩ S = (R : f∞)S (for
details, see Section 3.1.1). He then gives an algorithm for computing a set of generators of the ring
SGa = (R : f∞)S over K. The algorithm terminates if this ring is finitely generated.

In this section we will give a generalization of Van den Essen’s algorithm for computing gen-
erators of (R : f∞)S . We will give an algorithm for computing generators of the ring (R : a∞)S

for a finitely generated domain S over K, a finitely generated subalgebra R and any ideal a of R.
Our algorithm will terminate if and only if (R : a∞)S is finitely generated. This extension is quite
useful, as it allows us to compute rings of regular functions on irreducible quasi-affine varieties by
using (2.1).

Suppose that S is a domain over a field K, R is a finitely generated subalgebra and a ⊆ R is
an ideal. Then (R : a)S is an R-module. Suppose that a is nonzero. Then we can choose a nonzero
element f ∈ a. From the definition it follows that f(R : a)S ⊆ R. This way, we may identify
(R : a)S as a submodule of R. In particular, (R : a)S is finitely generated as an R-module. We will
first give an algorithm for finding R-module generators of (R : a)S .

Convention 2.5. We assume that S = K[x1, . . . , xn]/I where I is a prime ideal generated by a
finite set GI .

Algorithm 2.6 (Computation of (R : a)S).

Input: Polynomials f1, . . . , fr ∈ K[x1, . . . , xn] such that R is generated by f1 + I, . . . , fr + I,
and a finite set A ⊂ K[y1, y2, . . . , yr] such that the (nonzero) ideal a ⊆ R is generated by
g(f1, . . . , fr) + I, g ∈ A.

Output: A finite set H ⊆ K[x1, . . . , xn] such that (R : a)S is generated by 1 + I and all h + I,
h ∈ H as an R-module. Moreover, if (R : a)S = R then H = ∅.

(1) Let b be the ideal in K[x1, . . . , xn, y1, . . . , yr] generated by I and all yi − fi, i = 1, . . . , r.
Compute a Gröbner basis GJ of J := b ∩K[y1, . . . , yr]. (Choose an elimination ordering on
the monomials of K[x1, . . . , xn, y1, . . . , yr] and compute a Gröbner basis Gb of b. Then we
have GJ = Gb ∩K[y1, . . . , yr].)

(2) Choose u ∈ A such that u 6∈ J . (Reduce all elements u ∈ A with respect to the Gröbner basis
GJ until we have found an element u that does not reduce to 0.)

(3) Let d ⊆ K[y1, . . . , yr] be the ideal generated by J and A. Compute a Gröbner basis Gc of the
colon ideal c := (J + (u)) : d.

(4) Let v ⊆ K[x1, . . . , xn, y1, . . . , yr] be the ideal generated by I, u and all yi − fi, i = 1, 2, . . . , r.
Compute a Gröbner basis Gu of u := v ∩K[y1, . . . , yr].

(5) Compute a Gröbner basis Gq of the intersection q := u ∩ c.

(6) Compute a Gröbner basis Gp of the ideal p := J + (u) in K[y1, . . . , yr].

(7) Replace Gq by the subset of all elements that do not reduce to 0 with respect to the Gröbner
basis Gp.

(8) If Gq = {v1, . . . , vs}, compute h1, . . . , hs ∈ K[x1, . . . , xn] such that

vi(f1, . . . , fr) + I = u(f1, . . . , fr)hi + I



16 Harm Derksen, Gregor Kemper

for all i. To find h1, . . . , hs, proceed as follows. Each vi can be expressed in the form

vi =
∑
g∈GI

ai,gg + biu+
∑

j

ci,j(yj − fj).

with ai,g, bi, ci,j ∈ K[x1, . . . , xn, y1, . . . , yr] for all g, i, j. (this can be done using the extended
Gröbner basis algorithm in step (4)). Then plug in yi = fi for all i. We take

hi = bi(x1, . . . , xn, f1, . . . , fr)

for all i. Set H = {h1, . . . , hs}.

Proof of correctness of Algorithm 2.6. Consider the ring homomorphism

ϕ : K[y1, . . . , yr] → K[x1, . . . , xn]/I ∼= S

defined by yi 7→ fi + I. The image of ϕ is isomorphic to R, and the kernel of ϕ is J . So we have

K[y1, . . . , yr]/J ∼= R.

The ideal a ⊆ R is generated by all ϕ(g), g ∈ A. Since a ⊆ R is a nonzero ideal, there must exist a
u ∈ A such that ϕ(u) 6= 0. Hence there exists a u ∈ A that does not reduce to 0 modulo GJ . The
colon ideal (ϕ(u)R : a)R ⊆ R is equal to ϕ(c), and ϕ−1((ϕ(u)R : a)R) = c. The ideal u is equal to
ϕ−1(ϕ(u)S). We have

q = ϕ−1((ϕ(u)R : a)R ∩ ϕ−1(ϕ(u)S) = ϕ−1((ϕ(u)R : a)R ∩ ϕ(u)S).

Also, we get
p = ϕ−1(ϕ(u)R) = (u) + J.

After step (7), q is generated as an ideal in R by Gq, u and J . It follows that (ϕ(u)R : a)R ∩ϕ(u)S
is generated by ϕ(h), h ∈ Gq and ϕ(u).

Since
ϕ(u)(R : a)S = (ϕ(u)R : a)R ∩ ϕ(u)S,

we have that (R : a)S is generated as an R-module by 1 = ϕ(u)/ϕ(u) and all ϕ(v)/ϕ(u), v ∈ Gq. If
Gq = {v1, . . . , vs} then

ϕ(vi) = ϕ(u)(hi + I)

for all i. Since H = {h1, . . . , hs} we have that (R : a)S is generated by all 1+I and all h+I, h ∈ H.
By step (6) and (7) we have that ϕ(vi) 6∈ ϕ(u)R, and hi + I 6∈ R. Hence, if (R : a)S = R then

H = ∅.

Algorithm 2.7 (Computation of (R : a∞)S).

Input: Polynomials f1, . . . , fr ∈ K[x1, . . . , xn] such that R is generated by f1 + I, . . . , fr + I,
and a finite set A ⊂ K[y1, y2, . . . , yr] such that the (nonzero) ideal a ⊆ R is generated by
g(f1, . . . , fr) + I, g ∈ A.

Output: A (possibly infinite) sequence h1, h2, h3, . . . of elements in K[x1, . . . , xn] such that h1 +
I, h2 + I, . . . generate (R : a∞)S as a K-algebra. If (R : a∞) is finitely generated, then the
algorithm will terminate after finite time and the output will be a finite sequence.

(1) F = ∅

(2) H = {f1, . . . , fr}

(3) while H 6= ∅ do
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(4) output(H)

(5) F := F ∪H.

(6) Let H be the output of Algorithm 2.6 for the computation of (R̃ : a)S , where R̃ is the algebra
generated by all f + I, f ∈ F and a is the ideal in R̃ generated by all g(f1, . . . , fr)+ I, g ∈ A.

(7) enddo

Proof of correctness of Algorithm 2.7. Let R̃i be the algebra R̃ in step (6) in the i-th iteration of
the while loop in lines (3)–(7). We have R̃1 = R and

R̃i+1 ⊇ (R̃i : aR̃i)S = (R̃i : a)S .

where a is the ideal in R generated by all g(f1, . . . , fr) + I, g ∈ A. It easily follows by induction
that R̃i+1 ⊇ (R : ai)S for all i. Note that in step (6), the algebra R̃i is generated by all h+ I with
h ∈ F . Moreover, F is exactly the set of all polynomials that have been sent to the output.

If the algorithm does not terminate, then we have

R̃1 ⊆ R̃2 ⊆ · · ·

and

(R : a∞)S =
∞⋃

i=1

(R : ai)S ⊆
∞⋃

i=1

R̃i.

On the other hand it is easy to see (by induction) that R̃i ⊆ (R : a∞)S for all i. It follows that

(R : a∞)S =
⋃
i

R̃i. (2.2)

If the output is h1, h2, . . . then the algebra generated by h1 + I, h2 + I, . . . contains R̃i for all i.
Therefore, the algebra generated by h1 + I, h2 + I, . . . is (R : a∞)S .

Suppose that (R : a∞)S is finitely generated. By (2.2), R̃i contains all generators of (R : a∞)S

for some i, and R̃i = (R : a∞)S . But then H = ∅ after the i-th iteration of the while loop and
the algorithm terminates. The output is exactly F and R̃i = (R : a∞)S is generated by all h + I,
h ∈ F .

2.2 Finite generation

In this section we study domains which are not finitely generated over K. We introduce the finite
generation locus ideal of such an algebra.

Proposition 2.8. Suppose that S is a domain which is finitely generated over a field K and that R
is a subalgebra of S. Then there exists an nonzero element f ∈ R such that Rf is finitely generated
as a K-algebra.

Proof. Choose a finitely generated subalgebra T ⊆ R such that T and R have the same quotient
field. By the theorem of generic freeness (see Eisenbud [3, Theorem 14.4] or Remark 2.16 below),
there exists a nonzero element f ∈ T such that Sf is a free Tf -module. Let B be a basis of Sf over
Tf . We can write

1 =
r∑

i=1

uiei



18 Harm Derksen, Gregor Kemper

with e1, e2, . . . , er ∈ B and u1, u2, . . . , ur ∈ Tf . Since Rf and Tf have the same quotient field, it
follows that the submodule Rf ⊆ Sf is contained in

Tfe1 ⊕ Tfe2 ⊕ · · · ⊕ Tfer
∼= T r

f .

This shows that Rf is contained in a finitely generated Tf -module. Since Tf is a finitely generated
algebra, Rf is finitely generated as a Tf -module. It follows that Rf is a finitely generated algebra.

The following result is well-known. We give a proof for the reader’s convenience.

Proposition 2.9. Suppose that R is a domain over K and f, g ∈ R \ {0} such that (f, g) = R. If
Rf and Rg are finitely generated, then so is R, and R = Rf ∩Rg.

Proof. We may write Rf = K[a1, . . . , ar, f
−1] and Rg = K[b1, . . . , bl, g−1] with ai, bj ∈ R. We have

1 = xf + yg with x, y ∈ R. Take z ∈ Rf ∩Rg. Then

z =
a

fm
=

b

gn
with n,m ∈ N, a ∈ K[a1, . . . , ar, f ] and b ∈ K[b1, . . . , bl, g],

so

z = z(xf + yg)m+n =
m∑

i=1

(
m+ n

i

)
(xf)iym+n−igm−ib+

m+n∑
i=m+1

(
m+ n

i

)
xif i−m(yg)m+n−ia

Thus
R ⊆ Rf ∩Rg ⊆ K[a1, . . . , ar, b1, . . . , bl, f, g, x, y] ⊆ R,

and the result follows.

Proposition 2.10. For a domain R defined over a field K, define

g = {0} ∪ {f ∈ R \ {0} | Rf is a finitely generated K-algebra}.

Then g is a radical ideal of R.

Proof. If f ∈ g and g ∈ R are both nonzero, then

Rfg = (Rf )g

is finitely generated, because Rf is finitely generated. This implies fg ∈ g.
Suppose f, g ∈ g such that f , g, and f+g are all non-zero. We have (f, g)Rf+g = Rf+g, and the

algebras (Rf+g)f = (Rf )f+g and (Rf+g)g = (Rg)f+g are finitely generated. By Proposition 2.9,
Rf+g is finitely generated, so f + g ∈ g. It follows that g is an ideal.

The ideal g is clearly a radical ideal since Rfr = Rf for every f ∈ R and any positive integer
r.

We will call g the finite generation locus ideal of R. Note that g = R if and only if R is finitely
generated. If R is a subalgebra of a finitely generated algebra, then the finite generation locus ideal
is nonzero by Proposition 2.8.

Lemma 2.11. Suppose that S is a domain over K, R is a subalgebra, and a ⊆ R is an ideal. Set
b = (R : (R : a)S)S. Then b is an ideal of R, and a ⊆ b. Moreover,

(R : ai)S = (R : bi)S

for i ∈ N ∪ {∞}.
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Proof. Since a(R : a)S ⊆ R by definition of (R : a)S we get a ⊆ b := (R : (R : a)S)S . Since
1 ∈ (R : a)S we get b = (R : (R : a)S)S ⊆ (R : {1})S = R. Also, b is clearly an R-module, so it is
an ideal of R. Since a ⊆ b we have

(R : a)S ⊇ (R : b)S .

Because b = (R : (R : a)S)S , we get b(R : a)S ⊆ R. From this it follows that

(R : a)S ⊆ (R : b)S .

We conclude that
(R : a)S = (R : b)S .

By induction on i we prove that
(R : ai)S = (R : bi)S .

The case i = 1 has already been done. Suppose that i > 1. Then we have

(R : ai)S = ((R : a)S : ai−1)S = ((R : b)S : ai−1)S = (R : bai−1)S = ((R : ai−1)S : b)S .

By induction we may assume that (R : ai−1)S = (R : bi−1)S . So we get

(R : ai)S = ((R : ai−1)S : b)S = ((R : bi−1)S : b)S = (R : bi)S .

We also have
(R : a∞)S =

⋃
i

(R : ai)S =
⋃
i

(R : bi)S = (R : b∞)S

Lemma 2.12. Suppose that R is a finitely generated subalgebra of a domain S over a field K, a is
an ideal of R and suppose that R̃ = (R : a∞)S =

⋃
i R̃i, where

R ⊆ R̃1 ⊆ R̃2 ⊆ · · ·

is a sequence of finitely generated K-algebras. Define the ideal gi of R̃i by

gi =
√

(R̃i : (R̃i : a)S)S ,

where the radical ideal is taken in R̃i. Then we have

g1 ⊆ g2 ⊆ · · ·

and
g :=

⋃
i

gi

is the finite generation locus ideal of R̃.

Proof. Let us define hi = (R̃i : (R̃i : a)S)S so that gi =
√

hi. Note that

R̃ = (R : a∞)S = (R̃i : a∞)S = (R̃i : h∞i )S = (R̃i : g∞i )S (2.3)

by Lemma 2.11. Let u1, u2, . . . , ut be generators of the R̃i+1-module (R̃i+1 : a)S . This module is
contained in R̃ = (R̃i : g∞i )S . Therefore, there exists a positive integer l such that

gl
iuj ⊆ R̃i
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for all j. It follows that
gl

i(R̃i+1 : a)S ⊆ R̃i+1

and
gl

i ⊆ (R̃i+1 : (R̃i+1 : a)S)S = hi+1.

Taking radicals on both sides gives us

gi ⊆
√

hi+1 = gi+1.

We now show that g =
⋃

i gi is the finite generation locus ideal of R̃. If f ∈ g \ {0}, then f ∈ gi

for some i. We have
R̃ = (R̃i : g∞i )S ⊆ (R̃i)f ,

because f ∈ gi. It follows that
R̃f = (R̃i)f

is finitely generated.
Conversely, suppose that R̃f is finitely generated for some f ∈ R̃ \ {0}. Say, R̃f is generated

over K by h1, h2, . . . , hr ∈ R̃ and 1/f . For some i, we have f, h1, h2, . . . , hr ∈ R̃i. Therefore, we get

R̃ ⊆ (K[f, h1, . . . , hr] : f∞)S ⊆ (R̃i)f

Since (R̃i : a)S is a finitely generated R̃i-module, there exists a positive integer l such that

f l(R̃i : a)S ⊆ R̃i.

We see that
f l ∈ (R̃i : (R̃i : a)S)S = hi.

and f ∈ gi.

Using Lemma 2.12, it is now possible to find generators of the finite generation locus ideal of
the ring (R : a∞)S . To do this, we modify Algorithm 2.7 as follows.

Algorithm 2.13. An algorithm for finding generators of the finite generation locus ideal of an
algebra of the form (R : a∞)S where S = K[x1, . . . , xn]/I is a finitely generated domain over a field
K, R is a finitely generated subalgebra of S and a is an ideal of R.

Input: Polynomials f1, . . . , fr ∈ K[x1, . . . , xn] such that R is generated by f1 + I, . . . , fr + I,
and a finite set A ⊂ K[y1, y2, . . . , yr] such that the (nonzero) ideal a ⊆ R is generated by
g(f1, . . . , fr) + I, g ∈ A.

Output: A (possible infinite) sequence h1, h2, h3, . . . of elements in K[x1, . . . , xn] such that h1 +
I, h2 + I, . . . generate the finite generation locus ideal g of (R : a∞)S .

(1) F := ∅

(2) H := {f1, . . . , fr}

(3) while H 6= ∅ do

(4) F := F ∪H.

(5) output generators of g̃ :=
√

(R̃ : (R̃ : a)S)S where R̃ is the K-algebra generated by all f + I,

f ∈ F , and a is the ideal in R̃ generated by all g(f1, . . . , fr) + I, g ∈ A.

(6) Let H be the output of Algorithm 2.6 for the computation of (R̃ : a)S .
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(7) enddo

The algorithm terminates if and only if (R : a∞)S is finitely generated. In that case g is the whole
ring (R : a∞)S . So the interesting case is when the algorithm does not terminate. One should add
a termination criterion in step (3), i.e., replace step (3) by
while H 6= ∅ and not [termination criterion] do,
where [termination criterion] is some criterion. For example, one could allow at most k itera-
tions of the loop (3)–(7) where k is a parameter given in the input. Another example of a possible
termination criterion will be given in Algorithm 2.22.

To compute generators of g̃ in step (5), one proceeds as follows. We compute generators of
(R̃ : a)S using Algorithm 2.6. Let

h := (R̃ : (R̃ : a)S)S

Choose a nonzero element f ∈ a. Since 1 ∈ (R̃ : a)S we have

h = (R̃ : (R̃ : a)S) eR = (fR̃ : f(R̃ : a)S) eR,
so generators of h can be computed because it is again a colon ideal. Finally, generators of g̃ can
be computed using an algorithm to compute the radical ideal of h (see for example Derksen and
Kemper [2, Section 1.5], Matsumoto [16], or Kemper [12]). The correctness of the algorithm follows
from Lemma 2.12.

2.3 Hilbert’s fourteenth problem

Suppose that K is a field, L is a subfield of the rational function field K(x1, x2, . . . , xn) containing
K. Hilbert’s 14th problem asks whether L∩K[x1, . . . , xn] is finitely generated. Nagata gave a coun-
terexample to this conjecture [18]. In fact, Nagata constructed an algebraic (non-reductive) group
G and a linear action of G on the polynomial ring such that K[x1, . . . , xn]G is not finitely generated.
If we take L = K(x1, . . . , xn)G as the invariant field, then L ∩ K[x1, . . . , xn] = K[x1, . . . , xn]G is
not finitely generated, so this gives indeed a counterexample to Hilbert’s fourteenth problem. It is
not clear whether it is decidable whether L ∩K[x1, . . . , xn] is finitely generated, or even whether
L ∩K[x1, . . . , xn] = K.

We will replace K[x1, . . . , xn] by an arbitrary finitely generated domain S over K. Let L be a
subfield of the quotient field Q(S) of S. We assume that L is generated as a field by elements of
the ring S. In other words, L is the quotient field of some subalgebra R ⊆ S. We will present an
algorithm to compute generators of the algebra L ∩ S = Q(R) ∩ S. This algorithm will terminate
if this algebra is finitely generated. First we need the following constructive version of “generic
freeness”:

Theorem 2.14. Suppose that S is a finitely generated domain over K, and R is a finitely generated
subalgebra, then there exists an algorithm that finds a nonzero element f ∈ R such that Sf is a free
Rf -module, and Rf is a direct summand of Sf .

See Eisenbud [3, Theorem 14.4] for a proof of a more general version of Grothendieck’s generic
freeness lemma. Note that this lemma is often called “generic flatness”, but that almost all proofs
found in the literature prove the stronger “generic freeness” property. We will give here an algorithm
to find the f in question. For a slightly different algorithm, see Vasconcelos [22, Theorem 2.6.1]. We
assume that K is a field for which we have algorithms for a zero test and all arithmetic operations.
Assume that S = R[x1, . . . , xr]/I where x1, . . . , xr are indeterminates.

Algorithm 2.15 (Generic Freeness).

Input: R, S, generators of I.
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Output: An element f ∈ R \ {0} such that Sf is a free Rf -module, and Rf is a direct summand
in Sf .

(1) Let J be the ideal in Q(R)[x1, . . . , xr] generated by I (so it has the same set of generators as
I).

(2) Compute a Gröbner basis G of J with respect to some monomial ordering. If necessary,
multiply the polynomials from G by constants from Q(R) to make their leading coefficients
equal to 1.

(3) Compute f ∈ R \ {0} such that fh(x1, . . . , xr) ∈ R[x1, . . . , xr] for every h(x1, . . . , xr) ∈ G.

Proof of correctness of Algorithm 2.15. Let

ϕ : R[x1, . . . , xr] → S

be the homomorphism with kernel I that induces an isomorphism R[x1, . . . , xr]/I ∼= S. Let M be
the set of all monomials m such that m is not divisible by any leading monomial lm(h) with h ∈ G.
We claim that Sf is a free Rf -module with basis ϕ(M).

Suppose that h ∈ Sf . There exists a positive integer l such that f lh ∈ S. We can write
f lh = u(x1, . . . , xr) + I where u(x1, . . . , xr) ∈ R[x1, . . . , xr] ⊆ Q(R)[x1, . . . , xr]. Let v(x1, . . . , xr)
be the normal form of u(x1, . . . , xr) with respect to the Gröbner basis G. Thus if

G = {h1(x1, . . . , xr), . . . , hs(x1, . . . , xr)},

then there exist a1(x1, . . . , xr), a2(x1, . . . , xr), . . . , as(x1, . . . , xr) ∈ Q(R)[x1, . . . , xr] such that

u(x1, . . . , xr)− v(x1, . . . , xr) =
s∑

i=1

ai(x1, . . . , xr)hi(x1, . . . , xr).

Note that h1(x1, . . . , xr), . . . , hs(x1, . . . , xs) ∈ Rf [x1, . . . , xr]. If p(x1, . . . , xr) ∈ Rf [x1, . . . , xr] and
q(x1, . . . , xr) is obtained from p(x1, . . . , xr) by a single reduction step modulo the Gröbner basis G,
then q(x1, . . . , xr) ∈ Rf [x1, . . . , xr] as well. From this observation one can show using induction that
a1(x1, . . . , xr), . . . , as(x1, . . . , xr), v(x1, . . . , xr) ∈ Rf [x1, . . . , xr]. Now we get v(x1, . . . , xr) ∈ RfM ,
ϕ(v(x1, . . . , xr)) = f lh ∈ Rfϕ(M) and h ∈ Rfϕ(M). This shows that Sf = Rfϕ(M), i.e., ϕ(M)
generates Sf as an Rf module. It is clear from Gröbner basis theory that ϕ(M) is a linearly
independent set over Q(R). We conclude that Sf is a free Rf module with basis ϕ(M). We can
identify Rf with Rfϕ(1) = Rf · 1 ⊆ Sf , which is a direct summand because

Sf = Rf · 1⊕Rf · ϕ(M \ {1}).

Remark 2.16. Algorithm 2.15 is also correct in the case where R is not finitely generated. The
only problem is that we cannot provide a way of computing the ideals I and J in this case. In
fact, it in not even clear how to compute with elements from Q(R) if R is not finitely generated.
Nevertheless, the above proof of correctness of the algorithm does provide a proof of the generic
freeness theorem even for R not finitely generated. /

Algorithm 2.17 (Intersection of a field and a finitely generated domain).

Input: Generators and relations for a finitely generated domain S over K and generators of a
finitely generated subalgebra R.

Output: Generators of the algebra Q(R) ∩ S. The algorithm will terminate if Q(R) ∩ S is finitely
generated. If Q(R) ∩ S is not finitely generated, then the algorithm will not terminate but
the (infinite) output will still generate the algebra Q(R) ∩ S.
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(1) Use Algorithm 2.15 to compute f ∈ R \{0} such that Rf is a summand in the Rf -module Sf .

(2) Compute generators of (R : f∞)S using Algorithm 2.7.

Proof of correctness of Algorithm 2.17. We can write

Sf = Rf ⊕ C

where C is an Rf -module. Let π : Sf → Rf be the projection onto Rf . So π is an Rf -module
homomorphism such that π(a) = a if and only if a ∈ Rf . Suppose that s = a/b ∈ Sf with a, b ∈ Rf .
Then we have bs = a and bπ(s) = π(bs) = π(a) = a. So we obtain s = a/b = π(s) ∈ Rf . This
shows that Q(R) ∩ Sf = Rf . It follows that

Q(R) ∩ S ⊆ Rf ∩ S = (R : f∞)S ,

so Q(R) ∩ S = (R : f∞)S because the other inclusion is trivial.

The following theorem is Proposition 4 in Chapter V of Nagata [20].

Theorem 2.18. Suppose that R is a finitely generated normal domain over a field K, and L is a
subfield of Q(R) containing K. Then R ∩ L is isomorphic to the ring of regular functions on some
quasi-affine variety U defined over K. In other words, there exists a finitely generated domain T
over K and an ideal a of T such that

R ∩ L = (T : a∞)Q(T ).

Some extensions of this result can be found in Winkelmann [23]. Theorem 2.18 inspires us to
ask the following questions.

Problem 2.19. Let R and L be as in Theorem 2.18. Find an algorithm to construct generators of
T and a where T and a are as in Theorem 2.18.

Problem 2.20. Suppose that S is a finitely generated normal domain over K, R is a finitely
generated normal subalgebra and a is an ideal of R. Is the ring (R : a∞)S isomorphic to the ring of
regular functions on some quasi-affine variety over K?

The following proposition gives a positive answer to Problem 2.20 under an additional hypothesis.
We will later see that this hypothesis is satisfied in a situation which is of interest in invariant theory
(see Algorithm 3.9).

Proposition 2.21. Suppose that S,R, a are as in Problem 2.20. Let g be the finite generation locus
ideal of (R : a∞)S. Suppose that the affine variety corresponding to the ideal gS has codimension
≥ 2, in other words, all prime ideals containing gS have height ≥ 2. Then (R : a∞)S is isomorphic
to the coordinate ring of an quasi-affine variety.

Proof. The proposition follows from the correctness of the algorithm below.

The following algorithm is a modification of Algorithm 2.13.

Algorithm 2.22. An algorithm for finding a subalgebra R̃ ⊆ S and an ideal g̃ of R̃ such that

(R : a∞)S = (R̃ : g̃∞)Q( eR),

where S is a finitely generated normal domain over K, R is a finitely generated subalgebra, and a
is an ideal of R, such that the affine variety corresponding to gS has codimension at least 2, where
g is the finite generation locus ideal of (R : a∞)S .
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Input: Polynomials f1, . . . , fr ∈ K[x1, . . . , xn] such that R is generated by f1 + I, . . . , fr + I ∈
K[x1, . . . , xn]/I =: S, and a finite set A ⊂ K[y1, y2, . . . , yr] such that the (nonzero) ideal
a ⊆ R is generated by g(f1, . . . , fr) + I, g ∈ A.

Output: Generators of a subalgebra R̃ of R and generators of an ideal g̃ of R̃ such that

(R : a∞)S = (R̃ : g̃∞)Q( eR)

(1) Set F := ∅ and g̃ := {0}.

(2) H := {f1, . . . , fr}.

(3) while H 6= ∅ and [g̃S has codimension < 2] and g̃S 6= S do

(4) F := F ∪H.

(5) compute generators of g̃ :=
√

(R̃ : (R̃ : a)S)S where R̃ is the K-algebra generated by all f +I,

f ∈ F , and a is the ideal in R̃ generated by all g(f1, . . . , fr) + I, g ∈ A. The radical ideal is
meant to be formed in R̃.

(6) Let H be the output of Algorithm 2.6 for the computation of (R̃ : a)S .

(7) enddo

(8) output generators of R̃ and g̃

Remark. In step (3) of the algorithm, it is easy to determine the codimension of g̃S, since by
Eisenbud [3, Corollary 13.4], the codimension equals dim(S)− dim (S/g̃S). The dimension can be
read off a Gröbner basis, see Greuel and Pfister [5, Corollary 7.5.5] or Derksen and Kemper [2,
Section 1.2.5].

We also remark that the ideal g̃ found by the algorithm is not necessarily the finite generation
locus ideal. /

Proof of correctness proof of Algorithm 2.22. Let R̃i and gi be the algebra R̃ and the ideal g̃ in the
i-th iteration of loop (3)–(7). We have

R̃1 ⊆ R̃2 ⊆ · · ·

and
g1 ⊆ g2 ⊆ · · ·

such that gi is an ideal of R̃i for all i.
Assume that the algorithm does not terminate and the loop (3)-(7) is repeated infinitely many

times. Then
⋃

i R̃i = (R : a∞)S and g =
⋃

i gi is the finite generation locus ideal of (R : a∞)S ,
because of the correctness of Algorithm 2.13. So we have

g1S ⊆ g2S ⊆ g3S ⊆ · · · .

Since S is finitely generated over K, it is Noetherian. There exists an index k such that

gkS = gk+1S = · · · =
⋃
i

giS = gS.

In particular, there exists an index k such that the affine variety corresponding to the ideal gkS has
codimension ≥ 2. Let k be minimal with this property. This implies that the algorithm terminates
after the k-th iteration of the loop (3)-(7), and the output is R̃k and gk.
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Let X be the affine variety such that S = K[X]. If f ∈ (S : g∞k )Q(S), then f is a rational
function on X which is regular on all of X except for a closed subset of codimension ≥ 2. Since X
is normal, f is regular on X (see Eisenbud [3, below Corollary 11.4]), i.e., f ∈ S. This shows that

(S : g∞k )Q(S) = S.

So we have
(R̃k : g∞k )Q( eRk) ⊆ (S : g∞k )Q(S) = S.

It follows that
(R̃k : g∞k )Q( eRk) = (R̃k : g∞k )S = (R : a∞)S ,

where the last equality follows from (2.3).

3 Invariant rings of algebraic groups

Suppose that K is an algebraically closed field (of arbitrary characteristic) and G is an algebraic
group over K which acts regularly on an affine variety X. If G is not reductive, then K[X]G may
not be finitely generated.

Problem 3.1. Find an algorithm which determines whether K[X]G is finitely generated.

Problem 3.2. Given that K[X]G is finitely generated, find an algorithm that computes a set of
generators for K[X]G.

If G is reductive, then K[X]G is known to be finitely generated and an algorithm was given in
Section 1. If G is the additive group and the characteristic of the ground field is 0, then an algorithm
was given by van den Essen [4]. Here we will give such an algorithm in arbitrary characteristic and
where G can be any connected unipotent group.

Even if K[X]G is not finitely generated, there are still interesting questions to ask. Let K(X)G

be the field of invariant rational functions on X. Then we have

K[X]G = K[X] ∩K(X)G,

If X is normal, then there exists a quasi-affine variety U over K such that

K[X]G = K[U ]

by Theorem 2.18.

Problem 3.3. Find an algorithm which constructs a quasi-affine variety U such that K[X]G =
K[U ].

We will give such an algorithm where G is a connected unipotent group and K[X] is a unique
factorization domain.

3.1 Invariants of the additive group

Suppose that G = Ga is the additive group acting regularly on an irreducible affine varietyX over an
algebraically closed field K. The coordinate ring K[Ga] can be identified with the polynomial ring
K[t]. The group addition Ga ×Ga → Ga corresponds to a ring homomorphism K[t] → K[t]⊗K[t]
defined by t 7→ t⊗ 1 + 1⊗ t. The action Ga ×X → X corresponds to a ring homomorphism

µ : K[X] → K[Ga ×X] ∼= K[Ga]⊗K[X] ∼= K[X][t].
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Suppose that f ∈ K[X]. We can write

µ(f) = f0 + f1t+ f2t
2 + · · ·+ frt

r

with f0, . . . , fr ∈ K[X]. If σ ∈ Ga, then we have

((−σ) · f)(x) = f(σ · x) = µ(f)(σ, x) = f0(x) + f1(x)σ + · · ·+ fr(x)σr,

so
((−σ) · f) = f0 + f1σ + · · ·+ frσ

r.

In particular we have
f = 0 · f = f0. (3.1)

We have

(τ−σ)·f = f0+f1(σ−τ)+· · ·+fr(σ−τ)r = (τ)·((−σ)·f) = (τ ·f0)+(τ ·f1)σ+· · ·+(τ ·fr)σr (3.2)

for all σ, τ ∈ Ga
∼= K. Comparing the coefficients of σr shows that τ · fr = fr for all τ ∈ Ga. This

implies that fr ∈ K[X]Ga . We may extend µ to be defined for all f = g/h with g ∈ K[X] and
h ∈ K[X]Ga by setting µ(f) = µ(g)/h. Then (3.2) still holds.

If the action of Ga is trivial, then of course K[X]Ga = K[X]. So let us assume that Ga acts
non-trivially. Then there exists an f ∈ K[X] such that µ(f) 6= f . This element f will be chosen
once and fixed for the rest of Section 3.1. We can write

F (t) := µ(f) = f0 + f1t+ · · ·+ fr−1t
r−1 + frt

r, t ∈ Ga,

with r > 0 and fr 6= 0.

3.1.1 Characteristic 0 case.

If K has characteristic 0, then an algorithm was given by Van den Essen for computing generators
of K[X]Ga . This algorithm terminates if K[X]Ga is finitely generated. We will sketch the idea
behind this algorithm. We set s = fr−1/(rfr). From the coefficient of σr−1 in (3.2), it follows that
τ · fr−1 = fr−1 − rfrτ and τ · s = s− τ for all τ ∈ Ga.

Lemma 3.4. If h ∈ K[X]fr , then µ(h) |t=−s∈ K[X]Ga

fr
.

Proof. Set
H(t) := µ(h) = h0 + h1t+ · · ·+ hlt

l

with hi ∈ K[X]fr . From (3.2) it follows that

H(t− τ) = h0 + h1(t− τ) + · · ·+ hl(t− τ)l = (τ · h0) + (τ · h1)t+ · · · (τ · hl)tl

Using this for t = −s+ τ gives us

τ ·H(−s) = (τ · h0) + (τ · h1)(−τ · s) + · · ·+ (τ · hl)(−τ · s)l =

= (τ · h0) + (τ · h1)(−s+ τ) + · · ·+ (τ · hl)(−s+ τ)l = H((−s+ τ)− τ) = H(−s).

Suppose that K[X] = K[h1, . . . , hm]. Define

gi = µ(hi) |t=−s∈ K[X]Ga

fr

for i = 1, 2, . . . ,m. For every i, choose a natural number ki such that ui := fki
r gi ∈ K[X].
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Lemma 3.5. We have

K[X]Ga

fr
= K[g1, . . . , gm, 1/fr] = K[u1, . . . , um, 1/fr].

Proof. Define the ring homomorphism γ : K[X]fr → K[X]Ga

fr
by γ(g) = µ(g) |t=−s. The homomor-

phism γ is surjective, because γ(g) = µ(g) |t=−s= g for all g ∈ K[X]Ga

fr
. Since K[X]fr

is generated
by h1, . . . , hm, 1/fr, K[X]Ga

fr
is generated by γ(h1) = g1, . . . , γ(hm) = gm, γ(1/fr) = 1/fr.

From Lemma 3.5 it follows that

K[X]Ga = (K[u1, . . . , um, fr] : (fr)∞)K[X]

Now generators of K[X]Ga can be computed using Algorithm 2.7.

3.1.2 Arbitrary characteristic.

Let us now no longer assume that K has characteristic 0. Van den Essen’s algorithm may not work
because r may be divisible by the characteristic of K for every possible choice of f , as the following
example shows.

Example 3.6. Suppose that K is a field of characteristic 2 and define an action of the additive group
on K[x, y] by

µ(x) = x+ ty + t2, µ(y) = y

For every element f ∈ K[x, y], µ(f) is a polynomial of even degree in t.

Let X be an irreducible affine variety on which Ga acts regularly and non-trivially. Choose
again f ∈ K[X] such that µ(f) 6= f . Again we can write

F (t) := µ(f) = f0 + f1t+ · · ·+ frt
r

with r > 0 and fr 6= 0.

Lemma 3.7. If fr = 1, then K[X]Ga is finitely generated.

Proof. Suppose an invariant g ∈ K[X]Ga is mapped to zero by the canonical map πf : K[X]Ga →
K[X]/(f). Then g = hf with h ∈ K[X], so

g = µ(g) = µ(h)F (t)

This implies g = 0, since otherwise the degrees of both sides of the above equation would differ. It
follows that πf induces an inclusion K[X]Ga → K[X]/(f).

We claim that K[X]/(f) is integral over K[X]Ga . Suppose that u ∈ K[X] and let U(t) = µ(u) ∈
K[X][t]. Define P (s) ∈ K[X][s] as the resultant

P (s) = Rest(U(t)− s, F (t)).

Since F (t) is monic, it is clear from the definition of the resultant as the determinant of the Sylvester
matrix (see Lang [15, IV, §8]) that either P (s) or −P (s) is monic as well.

Consider the action of Ga on K[X][t, s], where Ga acts trivially on the variables t, s. If σ ∈ Ga,
then σ · U(t) = U(t− σ) by (3.2), and similarly σ · F (t) = F (t− σ). Therefore

σ · P (s) = Rest(U(t− σ)− s, F (t− σ)) = Rest(U(t)− s, F (t)) = P (s)

using Lang [15, Proposition 8.3]. It follows that all coefficients of P (s) lie in K[X]Ga .
There exist polynomials A(t, s), B(t, s) ∈ K[X][t, s] such that

P (s) = A(t, s)(U(t)− s) +B(t, s)F (t)



28 Harm Derksen, Gregor Kemper

(see Lang [15, discussion before IV, Proposition 8.1]). If we substitute t = 0 and s = u, we get

P (u) = A(0, u)(U(0)− u) +B(0, u)F (0) = B(0, u)f,

where the last equality follows from (3.1). Therefore P (u + (f)) = 0 in K[X]/(f), so u + (f) is
integral over K[X]Ga . The monic polynomial among P (x),−P (x) is the characteristic polynomial
of u+ (f) over K[X]Ga . Since u was arbitrary, K[X]/(f) is integral over K[X]Ga .

Suppose that h1, . . . , hm are generators of K[X]. Let R ⊆ K[X]Ga be the subalgebra generated
by the coefficients of the characteristic polynomials of hi + (f) ∈ K[X]/(f) over K[X]Ga for i =
1, 2, . . . ,m. We have R ⊆ K[X]Ga ⊆ K[X]/(f) and R is clearly finitely generated. Since K[X]/(f)
is finitely generated and integral over R, we have that K[X]/(f) is a finite R module. Since K[X]Ga

is a sub-R-module of K[X]/(f), it is finitely generated as an R-module as well. But then K[X]Ga

is also finitely generated as an algebra.

If fr = 1 and X is normal, then generators of K[X]Ga can be computed as follows. By
Lemma 1.11, K[X]Ga is the integral closure of R in K[X], where R is as in the proof of Lemma 3.7.
This integral closure can be computed as described in Algorithm 1.12. If fr = 1 but X is not
normal, Remark 1.13 may be applied to compute the integral closure.

Let us now consider the general case where fr need not be 1 and X need not be normal (but
is still assumed to be irreducible). Let s ⊆ K[X] be the vanishing ideal of the singular locus. This
ideal is non-zero and stable under the action of Ga. Without loss of generality, we could have chosen
f ∈ s such that µ(f) 6= f . We write

F (t) = µ(f) = f0 + f1t+ · · ·+ frt
r

with fr 6= 0. Choose distinct λ0, λ1, . . . , λr ∈ K. Using that the Vandermonde matrix is in-
vertible, we see that f0, f1, . . . , fr lie in the K-linear span of F (λ0), F (λ1), . . . , F (λr). We have
F (λ0), . . . , F (λr) ∈ s because s is Ga-stable. This implies that fr ∈ s. So fr vanishes on the set of
singularities, and K[X]fr is smooth. We have

µ(f/fr) = (f0/fr) + (f1/fr)t+ · · ·+ (fr−1/fr)tr−1 + tr.

Using the previous discussion we can compute generators of K[X]Ga

fr
. Of course there is no need to

choose f to lie in s if we apply Remark 1.13 to compute the integral closure. Suppose that

K[X]Ga

fr
= K[g1, . . . , gl]

For every i we can compute a nonnegative integer ki such that ui := fki
r gi ∈ K[X]. We then have

K[X]Ga = (K[u1, . . . , ul, fr] : (fr)∞)K[X].

Now generators of K[X]Ga can be computed using Algorithm 2.7.

3.2 Invariants of connected unipotent groups

Suppose that X is an irreducible affine variety on which the additive group Ga acts regularly.
We have already seen that there exists an algorithm that computes generators for a subalgebra
R ⊆ S := K[X] and generators of an ideal a such that SGa = (R : a∞)S . We now will deal with the
more general case where a connected unipotent group N acts regularly on X. A unipotent group N
is nilpotent (see Humphreys [8, Corollary 17.5]) and therefore solvable. If moreover N is connected,
then by [8, Theorem 19.3] there exists a descending chain of normal subgroups

N = Nk ⊃ Nk−1 ⊃ Nk−2 ⊃ · · · ⊃ N0 = (0).

such that each quotient Ni/Ni−1 has dimension one. By [8, Theorem 15.3(c)], each quotient is
again unipotent, and therefore it is isomorphic to the additive group Ga by [8, Theorem 20.5]. This
allows us to give a recursive approach to the computation of generators of K[X]N . The tricky part
here is that K[X]Ni may not be finitely generated for some i, even if K[X]N is finitely generated.
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Algorithm 3.8.

Input: The affine variety X (given by its coordinate ring S := K[X]), the connected unipotent
group N with its group structure (multiplication N × N → N and inverse N → N and the
identity element e ∈ N), the action N ×X → X, and a descending chain of normal subgroups

N = Nk ⊃ Nk−1 ⊃ · · · ⊃ N1 ⊃ N0 = (0)

with explicit isomorphisms Ni/Ni−1
∼= Ga for i = 1, 2, . . . , k.

Output: A subalgebra T ⊆ K[X] and an ideal d ⊆ T such that K[X]N = (T : d∞)K[X].

(1) If N = (0) (and k = 0), then terminate with as output the algebra S and its ideal S.

(2) Find a finitely generated subalgebra R ⊆ S := K[X] and an ideal a such that SN1 = (R : a∞)S

as in Section 3.1. Say R = K[f1, . . . , fr] and a = (h1, . . . , hs).

(3) Let R′ be the algebra generated by all u · fi where u ∈ N and i = 1, 2, . . . , r.

(4) Let a′ be the ideal of R′ generated by all u · hj where u ∈ N and j = 1, 2, . . . , s.

(5) Invoke this algorithm with input R′ and N ′ := N/N1 to find a subalgebra T ⊆ (R′)N ′
and an

ideal c of T such that (T : c∞)R′ = (R′)N ′
.

(6) Find a nonzero element a in (a′)N ′
= a′ ∩ (R′)N ′

. Replace T by T [a] to ensure that a′ ∩ T is
not the zero ideal.

(7) Output the algebra T and the ideal d := c(a′ ∩ T ).

Before we prove the correctness of this algorithm, we explain some of the steps in more detail.
In step (3), since N1 is normal in N , SN1 is stable under N and R′ ⊆ SN1 .
In step (6): Note that N ′ is unipotent and a′ is nonzero. We can find a nonzero finite dimensional

subrepresentation W ⊆ a′ because N ′ acts regularly on the infinite dimensional vector space a′. But
then WN ′

is nonzero. This shows that (a′)N ′
is nonzero. A nonzero element in (a′)N ′

can be found
using linear algebra and exhaustive search.

Proof of correctness of Algorithm 3.8. We need to show that

SN = (T : d∞)S .

We have
SN1 = (R : a∞)S .

We claim that we also have
SN1 = (R′ : (a′)∞)S .

Suppose that f ∈ SN1 . Since N is a normal subgroup, SN1 is N -stable. Let W be the vector space
spanned by all u ·f , u ∈ N . Then W is finite dimensional and contained in SN1 = (R : a∞)S . Then
there exists a positive integer l such that

alW ⊆ R

So in particular,
al(u−1 · f) ⊆ R.

for all u ∈ N . Applying u gives
(u · a)lf ⊆ u ·R ⊆ R′.
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Since a is finitely generated, there exists finitely many elements u1, . . . , um such that a′ is generated
by ui · a, i = 1, 2, . . . ,m.

Since
(a′)lm = (u1 · a + u2 · a + · · ·+ um · a)lm ⊆ u1 · al + · · ·+ um · al

we get
(a′)lmf ⊆ R′

and
f ∈ (R′ : (a′)∞)S .

Conversely, if f ∈ (R′ : (a′)∞)S , then f is invariant under N1 because R′ ⊆ SN1 and a′ ⊆ SN1

is not equal to (0).
Next we will show that

SN = (T : d∞)S

where
d = c(a′ ∩ T ).

Suppose that f ∈ SN . Then f ∈ SN1 = (R′ : (a′)∞)S , so there exists a positive integer l such
that

(a′)lf ⊆ R′.

It follows that
(a′ ∩ T )lf ⊆ (R′)N = (R′)N ′

Since a′ ∩ T is finitely generated, there exists a positive integer m such that

cm(a′ ∩ T )lf ⊆ T.

This shows that dnf ⊆ T for n ≥ max{l,m} and therefore f ∈ (T : d∞)S . It follows that

SN ⊆ (T : d∞)S .

The reverse inclusion
SN ⊇ (T : d∞)S

follows because T, d ⊆ SN and d 6= (0).

Finally we consider the case where N is a connected unipotent group acting regularly on an irre-
ducible factorial variety X. In this case we can effectively find a quasi-affine variety U such that
K[X]G = K[U ].

Algorithm 3.9.

Input: The irreducible affine factorial variety X, a connected unipotent group N and a regular
action N ×X → X.

Output: A finitely generated subalgebra R̃ ⊆ K[X] and an ideal g ⊆ R̃ such that

K[X]N = (R̃ : g∞)Q( eR).

(1) Find a finitely generated subalgebra R ⊆ K[X] and an ideal a of R such that

K[X]N = (R : a∞)K[X]

using Algorithm 3.8.
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(2) Apply Algorithm 2.22 to find R̃ and g̃ such that (R̃ : g̃∞)Q( eR) = K[X]N .

Proof of correctness of Algorithm 3.9. We need to show that Algorithm 2.22 applies here, i.e., we
have to prove that the variety corresponding to gK[X] is equal to K[X] or has codimension ≥ 2.
Suppose not. We can write

√
gK[X] as the intersection of finitely many distinct prime ideals. One

of these prime ideals has height 1, say p is such a prime ideal. Since N is connected, p must be
stable under N . Since K[X] is factorial, p is a principal ideal, say p = (h). Since N is unipotent, it
follows that h is invariant under N , so h ∈ K[X]N .

We have already seen that K[X]N is isomorphic to the ring of regular functions on some quasi-
affine variety U . There exists a finitely generated subalgebra S of K[X]N and an ideal b of S such
that

K[X]N = (S : b∞)Q(S).

Clearly b ⊂ g since K[X]Nf is finitely generated for all f ∈ b. Therefore b ⊆ gK[X] ⊆ hK[X]. It
follows that h−1b ⊆ K[X] and h−1b ⊆ K[X]N . This shows that h−1 ∈ (S : b∞)Q(S) = K[X]N .
But h−1 6∈ K[X], so h−1 6∈ K[X]N . Contradiction.

We have shown that the variety corresponding to gK[X] has codimension ≥ 2.

3.3 Invariants of arbitrary algebraic groups

If G is an arbitrary algebraic group, then there exists a connected unipotent normal subgroup N
such that G/N is reductive. Suppose that G acts on an irreducible affine variety X. One approach
to compute generators of K[X]G is by computing generators of K[X]N first. The problem of this
is that K[X]N may not be finitely generated, even if K[X]G is finitely generated. If K[X]N is
finitely generated, then Algorithm 3.8 can be used to compute a finitely generated subalgebra R
of K[X]N and an ideal a of R such that K[X]N = (R : a∞)K[X]. Then Algorithm 2.7 can be
used to find generators of K[X]N . Finally Algorithm 1.7 can be used to compute generators of
K[X]G = (K[X]N )G/N because G/N is reductive.

Even if K[X]N is not finitely generated, we might be able to compute generators of K[X]G.
Suppose that we have found R and a such that K[X]N = (R : a∞)K[X] using Algorithm 3.8.
Assume that R = K[f1, . . . , fr] and a = (h1, . . . , hs). We could try to copy the approach in
Section 3.2. So let R′ be the algebra generated by σ · fi with σ ∈ G and i = 1, 2, . . . , r and let
a′ be the ideal generated by all σ · hj with σ ∈ G and j = 1, 2, . . . , s. Similarly as in the proof of
Algorithm 3.8 we can show that

K[X]G = (R′ : (a′)∞)K[X]

If (a′)G/N is not equal to the zero ideal, then one can show that

K[X]G = ((R′)G/N : ((a′)G/N )∞)K[X]. (3.3)

Generators of (R′)G/N can be computed using Algorithm 1.7. Generators of (a′)G/N = a′∩ (R′)G/N

can be computed by using the usual Gröbner basis techniques. Finally generators of K[X]G can be
found using (3.3) and Algorithm 2.7. Of course this algorithm will not terminate, unless K[X]G is
finitely generated.

So what can we do if (a′)G/N is zero? Perhaps the choice of R′ and a′ were unfortunate. Suppose
that there exists an element f ∈ K[X]G such that (K[X]N )f is finitely generated. Then f ∈ g where
g is the finite generation locus ideal of K[X]N . Using Algorithm 2.13 we can construct subalgebras

R̃1 ⊆ R̃2 ⊆ · · ·

and ideals
g1 ⊆ g2 ⊆ · · ·
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such that
⋃
R̃i = K[X]N and g =

⋃
i gi. So we have f ∈ gi for some i. We terminate Algorithm 2.13

at step i when f ∈ gi. We have

K[X]N = (R : a∞)K[X] = (R̃i : g∞i )K[X].

So we might as well replace R by R = R̃i and a by a = gi. We then still have

K[X]N = (R : a∞)K[X]

but we also have f ∈ aG/N , so aG/N is not the zero ideal. We can proceed to compute generators
of the invariant ring K[X]G as discussed before.

We just saw that there exists an algorithm to compute generators of K[X]G if there exists a
nonzero element f ∈ K[X]G such that K[X]Nf is finitely generated. This may not always be the
case as the following example shows.

Example 3.10. Let H be the group and X be the representation in Nagata’s counterexample to
Hilbert’s fourteenth problem (see Nagata [18]). Here V is a 32-dimensional representation and H
is an algebraic group over the base field K = C and K[X]H is not finitely generated. Let N be the
unipotent radical of H. Then N is a connected unipotent group, H/N is reductive, and K[X]N

is not finitely generated, because otherwise K[X]H = (K[X]N )H/N would be finitely generated.
Let Gm = C? be the multiplicative group acting by scalar multiplication, and let G = GmN .
Then N is the unipotent radical of G. Since K[X]G = K, for every nonzero f ∈ K[V ]G we have
K[X]Nf = K[X]N is not finitely generated.

Suppose that G is an algebraic group and X is an irreducible normal G-variety. Suppose that
the quotient field Q(K[X]G) of the invariant ring K[X]G is equal to the field of invariant rational
functions on X, denoted by K(X)G. First we can find the transcendence degree of K(X)G : K
as follows. Let n = dimX and let m be the dimension of a generic G-orbit in X. Then the
transcendence degree of K(X) : K(X)G is m, and the transcendence degree of K(X)G : K is n−m.
If we consider the morphism

ψ : G×X → X ×X

defined by
ψ(σ, x) = (x, σ · x)

then the dimension of the closure of the image is n +m. Using Gröbner basis techniques one can
compute the dimension of the Zariski closure of the image of ψ, and hence determine m. Using
exhaustive search and linear algebra, one can compute a linear basis of invariants f1, f2, · · · ∈ K[X]G.
Terminate this exhaustive search if one finds among these invariants n−m algebraically independent
functions. Let us call them h1, . . . , hn−m. Let L be the field generated by h1, . . . , hn−m. Then
K(X)G : L is an algebraic extension. Let R be the integral closure of K[h1, . . . , hn−m] in K[X].
Generators of R can be computed using Algorithm 1.12. We have Q(R) = Q(K[X]G). It follows
that

K[X]G = K(X)G ∩K[X] = Q(R) ∩K[X].

So we can use Algorithm 2.17 to find generators of K[X]G.
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