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Abstract

Let G be an algebraic group acting on an irreducible variety X. We present an algorithm
for computing the invariant field k(X)G. Moreover, we give a constructive version of a theo-
rem of Rosenlicht, which says that almost all orbits can be separated by rational invariants.
More precisely, we give an algorithm for computing a non-empty open subset of X with a
geometric quotient.

Introduction

One of the classical problems of invariant theory is the construction of generating sets for invariant
rings. It is well-known that for a reductive group all invariant rings are finitely generated. It has
taken a number of steps to convert the existence theorems of finite generating sets into actual
algorithms. We refer to the book [5] and to the more recent papers [10] and [6] for details. A
variant of this problem is the problem of constructing a generating set for the invariant field,
i.e., the field of all rational invariants. It should come as no surprise that this problem turns
out to be easier. Indeed, the paper [12] by Müller-Quade and Beth provides an algorithm for
constructing a generating set of the invariant field of a linear algebraic group acting linearly on
a finite-dimensional vector space V . The restriction to reductive groups no longer applies. The
paper [9] by Hubert and Kogan contains, among other results, a variant of the algorithm that
applies to the slightly more general situation where the action on V need not be linear and may,
in fact, be rational. By considering so-called cross sections, the authors obtain an optimization
of the algorithm. For finite groups, we have an algorithm, contained in the paper by Fleischmann
et al. [7], which does not require any Gröbner basis techniques.

In this paper, the algorithm of Müller-Quade and Beth is generalized to the situation where
G is an algebraic group acting on an irreducible variety X by a rational map. Neither G nor
X are assumed to be affine. The proof of correctness of the algorithm is a simplification of the
proof given in [12]. Being simpler, it applies to a more general situation. The algorithm allows
iteration along a chain of subgroups of G. The second result of the paper is an algorithm which
makes Rosenlicht’s theorem constructive. For an action on an irreducible, affine variety, this
algorithm finds a non-empty, open subset where all orbits are separated by rational invariants.
If G is connected, we can iterate this algorithm and thus obtain a parametrization of all G-orbits
by invariants with case distinctions.

The paper is organized as follows. In the first section, we consider the Derksen ideal, named
after Derksen’s algorithm [4], in a very general situation: We only assume that G is a group
acting on a field K, fixing a subfield k over which K is finitely generated. We show that if G is a
monic, reduced Gröbner basis of the Derksen ideal, then the coefficients of all polynomials in G
generate the invariant field KG. We also present an algorithm which tests a rational function for
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invariance, and represents it in terms of the generators of KG. This leaves the question of how
the Derksen ideal can be computed. This question is addressed in Section 2. In that section,
we consider the situation where G is an algebraic group acting on an irreducible variety X by
a rational map. We present an algorithm for computing the Derksen ideal. The computational
core of the algorithm is the calculation of an elimination ideal. In the final section, we consider
an action of a linear algebraic group on an affine variety X. We give an algorithm that computes
a non-empty, open subset X̂ of X such that all G-orbits in X̂ are separated by rational invariants
defined on X̂. Optionally, the algorithm computes a geometric quotient. The proof of correctness
is a modification of proofs of Rosenlicht’s theorem known from the literature.

Acknowledgments. I thank Harm Derksen for fruitful conversations. Further thanks go to
the anonymous referees and to Vladimir Popov for very valuable comments, which led to a major
revision of the paper.

1 Invariant fields

Let K be a commutative ring with unity, and let G ⊆ Aut(K) be a group of automorphisms of
K. We write KG for the invariant ring. Fix elements x1, . . . , xn ∈ K, and let K[y1, . . . , yn] the
polynomial ring in n indeterminates. Then the Derksen ideal is defined as

D :=
⋂

σ∈G

〈y1 − σ(x1), . . . , yn − σ(xn)〉K[y1,...,yn] , (1.1)

in which the pointed brackets indicate generation as an ideal. We have a homomorphism

ϕ: KG[y1, . . . , yn] → K, yi 7→ xi

of KG-algebras.
For the rest of Section 1, we assume that K is a field. Choose a monomial ordering “>” on

K[y1, . . . , yn], and let G be a monic, reduced Gröbner basis of D w.r.t. “>”. (Here monic means
that all leading coefficients are 1.) By the following proposition, the relations of the xi over KG

are given by G.

Proposition 1.1. In the above situation, G is a Gröbner basis of ker(ϕ) ⊆ KG[y1, . . . , yn] w.r.t.
the monomial ordering “>”.

Proof. We apply the elements of G to polynomials in K[y1, . . . , yn] coefficient-wise. By definition,
D is G-stable. Take σ ∈ G. Then σ(G) is a reduced, monic Gröbner basis of σ(D) = D. By the
uniqueness of reduced, monic Gröbner bases (see Becker and Weispfenning [1, Theorem 5.43]), it
follows that σ(G) = G. Since applying σ preserves monomials and since all leading monomials of
polynomials from G are distinct, G fixes G element-wise, so G ⊆ KG[y1, . . . , yn]. Moreover, every
f ∈ G lies in D, therefore also in 〈y1 − x1, . . . , yn − xn〉K[y1,...,yn]. Thus substituting yi = xi in f
yields 0, so ϕ(f) = 0. So G ⊆ ker(ϕ).

To complete the proof, take g ∈ ker(ϕ) \ {0}. We need to show that the leading monomial
LM(g) is divisible by the leading monomial of a polynomial from G. From ϕ(g) = 0, it follows
that g ∈ 〈y1 − x1, . . . , yn − xn〉K[y1,...,yn]. Let σ ∈ G. Then

g = σ(g) ∈ σ (〈y1 − x1, . . . , yn − xn〉) = 〈y1 − σ(x1), . . . , yn − σ(xn)〉 ,

so g ∈ D. Since G is a Gröbner basis of D, the leading monomial of g is divisible by some LM(f)
with f ∈ G.

The next theorem contains an invariance test. For the definition of a normal form with respect
to a Gröbner basis (or any set of polynomials) we refer the reader to Becker and Weispfenning [1,
p. 196].
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Theorem 1.2. In the situation of Proposition 1.1, let f, g ∈ KG[y1, . . . , yn] be polynomials with
g(x1, . . . , xn) 6= 0, and set a := f(x1,...,xn)

g(x1,...,xn) . Then

a ∈ KG ⇐⇒ NFG(f) = a ·NFG(g),

where NFG denotes the normal form w.r.t. G.

Proof. Assume that a ∈ KG. Then f−ag lies in the domain of definition of ϕ, and ϕ(f−ag) = 0.
By the K-linearity of the normal form map and by Proposition 1.1, we obtain

NFG(f)− a ·NFG(g) = NFG(f − ag) = 0.

Conversely, assume NFG(f) − a · NFG(g) = 0. Then, since G is a Gröbner basis of D, it follows
that f − ag ∈ D. So for every σ ∈ G, we have f − ag ∈ 〈y1 − σ(x1), . . . , yn − σ(xn)〉K[y1,...,yn],
so f (σ(x1), . . . , σ(xn))− a · g (σ(x1), . . . , σ(xn)) = 0. This equation, together with the fact that
σ is an automorphism of KG-algebras, implies σ(f(x1, . . . , xn))− a · σ(g(x1, . . . , xn)) = 0, so

a =
σ(f(x1, . . . , xn))
σ(g(x1, . . . , xn))

= σ(a).

Thus a ∈ KG.

Let K, G, x1, . . . , xn and G be as above. Moreover, let k ⊆ KG be a subfield of the invariant
field. We write k(x1, . . . , xn) ⊆ K for the field extension of k generated by the xi, which need
not be G-stable. For example, k(x1, . . . , xn) may be the invariant field of a subgroup H ⊆ G.
Let L ⊆ K be the field extension of k generated by all coefficients of polynomials from G.

Corollary 1.3. In the above situation, assume that KG ⊆ k(x1, . . . , xn). Then

KG = L.

Proof. Proposition 1.1 implies that G is a subset of KG[y1, . . . , yn], so L ⊆ KG.
For the reverse inclusion, take a ∈ KG. SinceKG ⊆ k(x1, . . . , xn), we can write a = f(x1,...,xn)

g(x1,...,xn)

with f, g ∈ k[y1, . . . , yn]. By Theorem 1.2, we obtain

NFG(f) = a ·NFG(g).

Observe that both NFG(f) and NFG(g) lie in L[y1, . . . , yn], since f , g, and all elements of G lie in
L[y1, . . . , yn]. We have NFG(g) 6= 0, since otherwise g(x1, . . . , xn) would be 0 by Proposition 1.1.
Hence

a =
NFG(f)
NFG(g)

∈ L(y1, . . . , yn) ∩K = L.

We conclude this section by giving an algorithm for representing an invariant a ∈ KG as
a rational function (with coefficients in the field k) in the generators of L. Assume that we
have the monic, reduced Gröbner basis G of the Derksen ideal. We can choose a1, . . . , ar ∈ KG

such that all coefficients of polynomials in G can be written as polynomials in a1, . . . , ar with
coefficients in k. For example, every coefficient a of a polynomial in G with a /∈ k may be taken as
one of the ai. More formally, with indeterminates A1, . . . , Ar and ψ: k[A1, . . . , Ar, y1, . . . , yn] →
KG[y1, . . . , yn] being the homomorphism of k[y1, . . . , yn]-algebras sending Ai to ai, we have a set
G0 ⊆ k[A1, . . . , Ar, y1, . . . , yn] consisting of preimages of the polynomials in G under ψ.

Algorithm 1.4 (Invariance test and expression by generating invariants).

Input: Invariants a1, . . . , ar ∈ KG and a preimage G0 of G as above; moreover, polynomials
f, g ∈ k[y1, . . . , yn].



4 G. Kemper

Output: “False” if g(x1, . . . , xn) = 0 or a := f(x1,...,xn)
g(x1,...,xn) /∈ K

G; but if a ∈ KG, a rational function
h ∈ k(A1, . . . , Ar) with a = h(a1, . . . , ar).

(1) Regarding f , g, and the polynomials from G0 as elements of k(A1, . . . , Ar)[y1, . . . , yn],
compute normal forms f0 and g0 of f and g w.r.t. G0 and the monomial ordering “>”.
(Both f0 and g0 will lie in k[A1, . . . , Ar, y1, . . . , yn] since the leading coefficients of all
polynomials in G0 are 1.)

(2) Set f̃ := ψ(f0) and g̃ := ψ(g0).

(3) If g̃ = 0 or f̃ − ag̃ 6= 0, return “False”.

(4) Choose a monomial m in the y-variables such that m appears with non-zero coefficient in g̃.

(5) Let fm and gm be the coefficients of the monomial m in f0 and g0, respectively, and set
h := fm

gm
.

Proof of correctness of Algorithm 1.4. It is clear that f̃ and g̃ are the (uniquely defined) normal
forms of f and g w.r.t. G. By Theorem 1.2, a is invariant if and only if f̃ − ag̃ = 0, in which case
a = f̃/g̃. Thus for the monomial m chosen in step 4, we have

a =
coeffm(f̃)
coeffm(g̃)

=
ψ (coeffm(f0))
ψ (coeffm(g0))

.

This concludes the proof.

2 Algebraic actions

If G is a finite group acting on a field K, it is clear how the Derksen ideal D, as given by (1.1), can
be calculated. For infinite groups, this is far less clear, and will depend on the specific situation.
In this section we will look at the algebraic situation. We will give an algorithm for calculating
a Gröbner basis of D. Together with Corollary 1.3, this will yield an algorithm for computing
the invariant field.

Let us consider the following situation. Assume k to be an algebraically closed field. (With-
out this assumption, everything should also work in the scheme-theoretic sense.) Let X be an
irreducible variety and G an algebraic group, both over k (neither X nor G need be affine).
Moreover, let U ⊆ G×X be an open subset and ρ: U → X a morphism such that

(i) for all σ ∈ G, the set Uσ := {x ∈ X|(σ, x) ∈ U} is non-empty.

So ρσ: Uσ → X, x 7→ ρ(σ, x) defines a rational map from X to itself. We also assume that

(ii) all ρσ are birational maps, and assigning ρσ to σ yields a homomorphism from G into the
group of birational maps from X to itself.

Thus G acts on the function field K := k(X) by σ(f) := f ◦ ρ−1
σ . This situation coincides

with the definition of a rational action by Popov and Vinberg [13, Section 1.1]. Clearly the
“standard” situation, in which G is a linear algebraic group and X is an (affine) G-variety, is
included in our situation. G is a finite union of open, affine subsets. These subsets can be dealt
with computationally. So let G′ ⊆ G be an open, affine subset (which need not be a subgroup).
We thus have an embedding G′ ⊆ km into some affine m-space. Let I := Id(G′) ⊆ k[t1, . . . , tm]
be the vanishing ideal. The following lemma describes the action on K = k(X).

Lemma 2.1. In the above situation, let f ∈ K be a rational function on X. Then there exists a
rational function F ∈ K(t1, . . . , tm) in m indeterminates that is defined at all σ = (ξ1, . . . , ξm) ∈
G′ ⊆ km, such that

σ−1(f) = F (ξ1, . . . , ξm).
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The lemma seems almost obvious, but the proof is nevertheless somewhat tedious.

Proof. There exists a non-empty, open subset V ⊆ X such that f : V → k is a regular function. It
is convenient to consider a non-empty, open, affine subset X ′ of X. The set ρ−1(V )∩(G′×X ′) ⊆
G × X is open, and f ◦ ρ is a regular function on this set. X ′ is embedded in some affine
space kn, so there exists a rational function F0 ∈ k(t1, . . . , tm, x1, . . . , xn) which is defined on
ρ−1(V ) ∩ (G′ ×X ′) ⊆ km × kn, and

f (ρ(σ, x)) = F0(σ, x) (2.1)

for all (σ, x) ∈ ρ−1(V ) ∩ (G′ × X ′). With J := Id(X ′) ⊆ k[x1, . . . , xn] we have K = k(X ′) =
Quot (k[x1, . . . , xn]/J). The denominator of F0 does not lie in 〈J〉k[t1,...,tm,x1,...,xn], so we can
form the reduction

F := F0(t1, . . . , tm, x1 + J, . . . , xn + J) ∈ K(t1, . . . , tm)

modulo J . Let σ = (ξ1, . . . , ξm) ∈ G′. To prove the lemma, it suffices to show that F is defined
at (ξ1, . . . , ξm) and that there exists a non-empty, open subset W ⊆ X on which f ◦ ρσ and
F (ξ1, . . . , ξm) coincide. Since ρσ is birational, its image ρσ(Uσ) contains a non-empty, open
subset of X. Therefore ρσ(Uσ) ∩ V is also non-empty, and thus the same is true for ρ−1

σ (V ) and
for W := ρ−1

σ (V ) ∩X ′. Take x ∈W . Equation (2.1) implies that F is defined at (σ, x) and

F (ξ1, . . . , ξm, x) = f (ρ(σ, x)) = (f ◦ ρσ)(x).

This completes the proof.

We will now assume that the affine subset G′ ⊆ G is dense. Being a disjoint union of its
irreducible components, every algebraic group has a dense, affine subset. The following theorem
gives a way to compute the Derksen ideal. Combining the theorem with Corollary 1.3 provides
an algorithm for computing KG. I thank one of the referees for bringing up the idea of using a
dense affine subset of G.

Theorem 2.2. Let G be an algebraic group acting rationally on an affine variety X, as de-
scribed above. Let G′ ⊆ G be a dense, affine subset defined as an affine variety by an ideal
I ⊆ k[t1, . . . , tm]. Let x1, . . . , xn ∈ K := k(X), so

σ−1(xi) = Fi(ξ)/H(ξ) for σ = (ξ1, . . . , ξm) = (ξ) ∈ G′

with F1, . . . , Fn,H ∈ K[t1, . . . , tm] as in Lemma 2.1. Take additional indeterminates y1, . . . , yn

and z, and form the ideal

J :=
〈
I ∪ {Hy1 − F1, . . . ,Hyn − Fn} ∪ {zH − 1}

〉
K[t1,...,tmi

,z,y1,...,yn]
.

Then the Derksen ideal is given by

D :=
⋂

σ∈G

〈y1 − σ(x1), . . . , yn − σ(xn)〉K[y1,...,yn] = J ∩K[y1, . . . , yn].

Proof. Set
D′ :=

⋂
σ∈G′

〈y1 − σ(x1), . . . , yn − σ(xn)〉K[y1,...,yn] .

We first show that
J ∩K[y1, . . . , yn] = D′ (2.2)

To show that J ∩K[y1, . . . , yn] ⊆ D′, let f ∈ J ∩K[y1, . . . , yn]. We can write

f =
r∑

j=1

gjhj +
n∑

j=1

fj · (Hyj − Fj) + f0 · (zH − 1) (2.3)
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with gj , fj ∈ K[t1, . . . , tm, z, y1, . . . , yn] and hj ∈ I. Take σ = (ξ1, . . . , ξm) ∈ G′. Since f only
depends on y1, . . . , yn, we can substitute arbitrary values for z and the tj in f . We will substitute
tj = ξj and z = H(σ)−1. Furthermore, we substitute yj = Fj(σ)/H(σ) and, using (2.3), obtain

f
(
F1(σ)/H(σ), . . . , Fn(σ)/H(σ)

)
= 0.

Moreover, we have

f − f
(
F1(σ)/H(σ), . . . , Fn(σ)/H(σ)

)
∈

〈
y1 − F1(σ)/H(σ), . . . , yn − Fn(σ)/H(σ)

〉
.

(This holds for any f ∈ K[y1, . . . , yn].) Therefore f ∈ 〈y1 − Fi,1(σ)/Hi(σ), . . . ,
yn − Fi,n(σ)/Hi(σ)〉K[y1,...,yn]. Since this holds for all σ ∈ G′, f ∈ D′ follows.

Conversely, let f ∈ D′. Let d be the maximal total degree of a monomial (in the yj) occurring
in f . By Lemma 2.3 below, we have

Hd · f (F1/H, . . . , Fn/H)−Hd · f ∈ J. (2.4)

Set g := Hd · f (F1/H, . . . , Fn/H) ∈ K[t1, . . . , tm]. For all σ ∈ G′ we have

g(σ) = H(σ)d · f
(
F1(σ)/H(σ), . . . , Fi(σ)/H(σ)

)
= 0

since f ∈ D′. There exist a1, . . . , as ∈ K which are linearly independent over k such that g can
be written as g =

∑s
j=1 ajgj with gj ∈ k[t1, . . . , tm]. For all σ ∈ G′ we have

0 = g(σ) =
s∑

j=1

gj(σ) · aj ,

which implies gj(σ) = 0 for all j. Thus gj ∈ I, so g ∈ J . With (2.4) we obtain Hd · f ∈ J .
Moreover,

zdHd − 1 = (zH − 1) ·
d−1∑
j=0

(zH)j ∈ J,

so f ∈ J . It follows that f ∈ J ∩K[y1, . . . , yn]. Thus (2.2) is proved.
Next we show that D′ = D. Clearly D ⊆ D′. Conversely, take f ∈ D′ and consider the set

Gf :=
{
σ ∈ G | f ∈ 〈y1 − σ(x1), . . . , yn − σ(xn)〉K[y1,...,yn]

}
=

{σ ∈ G | f (σ(x1), . . . , σ(xn)) = 0} .

Then G′ ⊆ Gf , and it follows from Lemma 2.1 that the intersection of Gf with an affine subset
of G is closed in that subset. By the denseness of G′, every open, affine subset of G is contained
in Gf , so Gf = G. This implies f ∈ D.

The following lemma was used in the proof of Theorem 2.2.

Lemma 2.3. Let R be an integral domain, f ∈ R[y1, . . . , yn] a polynomial, and take d to be a
non-negative integer that is bigger than or equal to the total degree of every monomial occurring
in f . Moreover, let H,F1, . . . , Fn ∈ R. Then

Hd · f (F1/H, . . . , Fn/H)−Hd · f ∈ 〈Hy1 − F1, . . . ,Hyn − Fn〉R[y1,...,yn] .

Proof. By R-linearity, it suffices to prove the lemma for the case that f is a monomial. We may
also assume d = deg(f). We proceed by induction on d. For d = 0, there is nothing to show. If
d > 0 we can write f = yi · f̃ with deg(f̃) = d− 1. Then

Hd · f (F1/H, . . . , Fn/H)−Hd · f =

Fi ·
(
Hd−1f̃ (F1/H, . . . , Fn/H)−Hd−1 · f̃

)
+ (Fi −Hyi) ·Hd−1f̃ .

Both summands lie in 〈Hy1 − F1, . . . ,Hyn − Fn〉, the first by induction and the second by defi-
nition.
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Remark 2.4. (a) Theorem 2.2 carries over to the case that K is an arbitrary commutative
ring containing the field k as a subring. We only need to assume that H(ξ1, . . . , ξm) is
invertible in K for each (ξ1, . . . , ξm) ∈ G′. The proof of Theorem 2.2 carries over word by
word to the more general case. For example, K can be the ring of regular functions on an
affine variety on which G acts by a morphism.

(b) The ideal D appearing in Theorem 2.2, with K being a polynomial ring, is precisely the
ideal that plays a central role in Derksen’s algorithm [4]. This is why we chose to call it
the Derksen ideal.

(c) It is also possible to formulate Theorem 2.2 without assuming that we have a dense, affine
subset G′ ⊆ G. Instead, one covers G with affine subsets and forms the union of the
Derksen ideals of these subsets. /

Since the computation of K ∩k[y1, . . . , yn] can be done algorithmically (this is an elimination
ideal), we obtain an algorithm for computing invariant fields. This generalizes the algorithm first
given by Müller-Quade and Beth [12].

Example 2.5. The purpose of this example is to illustrate our algorithm. In particular, we will
illustrate the use of a subgroup which is not normal. We consider the diagonal action of G :=
PGL2(k) on X :=

(
P1(k)

)4 with k a field of characteristic 0. We first compute the invariants of
the Borel subgroup

H := {σa,b = K∗ ·
(
a b
0 1

)
| a, b ∈ k, a 6= 0} ⊂ G.

The function field K := k(X) is generated by four algebraically independent elements xi, defined
by

xi(P1, . . . , P4) =
first homogeneous coordinate of Pi

second homogeneous coordinate of Pi
for (P1, . . . , P4) ∈ (P1(k))

4
,

for σa,b ∈ H we have σ−1
a,b(xi) = axi + b, so the action is given by the polynomials Fi = t1xi + t2.

The ideal J from Theorem 2.2 is

J = 〈{t1t3 − 1} ∪ {yi − t1xi − t2 | i = 1, . . . , 4}〉K[t1,t2,t3,y1,y2,y3,y4]
.

Using Magma (Bosma et al. [2]), we compute a monic, reduced Gröbner basis G of the elimination
ideal J ∩K[y1, . . . , y4], which is

G =
{
y1 −

x1 − x4

x3 − x4
y3 +

x1 − x3

x3 − x4
y4, y2 −

x2 − x4

x3 − x4
y3 +

x2 − x3

x3 − x4
y4

}
This yields

KH = k

(
f1 :=

x1 − x4

x3 − x4
, f2 :=

x2 − x4

x3 − x4

)
,

since the other coefficients appearing in polynomials of G can be expressed as rational functions
in f1 and f2.

In the next step we use Theorem 2.2 and Corollary 1.3 again to calculate KG from KH .
Notice that KH is not G-stable, but KG ⊆ KH . A dense, affine subset of G is given by

G′ := {
(

1 0
c 1

)
· σa,b | a, b, c ∈ k, a 6= 0}.

For τ ∈ G′ with parameters a, b, c, we obtain

τ−1(f1) =
(x1 − x4)(cx3 + 1)
(x3 − x4)(cx1 + 1)

and τ−1(f2) =
(x2 − x4)(cx3 + 1)
(x3 − x4)(cx2 + 1)

.
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Thus the “new” ideal J is

J := 〈(x3 − x4)(tx1 + 1)y1 − (x1 − x4)(tx3 + 1),
(x3 − x4)(tx2 + 1)y2 − (x2 − x4)(tx3 + 1), z(tx1 + 1)(tx3 + 1)− 1〉K[t,z,y1,y2]

.

The elimination ideal J ∩ k[y1, y2] is calculated by using Magma and has the reduced Gröbner
basis

G′ =
{
y1y2 −

(x1 − x3)(x2 − x4)
(x1 − x2)(x3 − x4)

y1 +
(x1 − x4)(x2 − x3)
(x1 − x2)(x3 − x4)

y2

}
.

We pick out two coefficients, and notice that their difference is 1, hence KG is generated by

g =
(x1 − x2)(x3 − x4)
(x1 − x3)(x2 − x4)

This is the function which assigns to a tuple (P1, . . . , P4) ∈
(
P1(k)

)4 the cross-ratio of the Pi.
Thus we get the well-known and classical result that the projective invariants of four points on
a projective line are generated by the cross-ratio.

The total computing time for this example was about 0.1 seconds.

Example 2.6. We run the algorithm on the example given by Daigle and Freudenburg [3]. This
is the smallest example known to date of an action with a non-finitely generated invariant ring.
The additive group acts on five variables xi by

x1 7→ x1, x2 7→ x2 + tx3
1, x3 7→ x3 + tx2 +

t2

2
x3

1,

x4 7→ x4 + tx3 +
t2

2
x2 +

t3

6
x3

1, and x5 7→ x5 + tx2
1.

It is straightforward to set up the ideal J ⊆ k(x1, . . . , x5)[t, y1, . . . , y5] from Theorem 2.2 and
to compute the elimination ideal D = J ∩ k(x1, . . . , x5)[y1, . . . , y5]. In fact, a Gröbner basis of
J with respect to the lexicographical monomial ordering with t > y1 > · · · > y5 can even be
computed by hand, and a Gröbner basis of D can be extracted. Gathering coefficients, we obtain

k(x1, . . . , x5)Ga = k(x1, x1x5 − x2, 2x2x5 − 2x2
1x3 − x1x

2
5, 6x3x5x

2
1 + x1x

3
5 − 3x2x

2
5 − 6x4

1x4).

In particular, the invariant field has the simplest possible structure: it is purely transcendental.

3 The theorem of Rosenlicht

In this section we consider an action of a linear algebraic group G on an irreducible, affine
variety X. As above, all varieties will be over an algebraically closed field k. We will use the
term geometric quotient in the sense of Definition 4.1 in Popov and Vinberg [13]. In particular,
if f1, . . . , fr ∈ k[X]G define a geometric quotient X → Y , then k[X]G = k[f1, . . . , fr].

It will be convenient to use the following abbreviation. If S ⊆ X is a subset of an affine
variety, then a non-empty subset U ⊆ S will be called a p.o.s. of S if it has the form U = {x ∈
S | g(x) 6= 0} with g ∈ k[X] and S being the Zariski closure. (Of course the letters come from
“principal open subset”, since a p.o.s. is a principal open subset of S.) Every p.o.s. is an affine
variety. In the following we will make use of Algorithm 1.1 in [11]. This algorithm computes
a p.o.s. U of the image f(X) of a morphism f : X → Y of non-empty affine varieties, with
the additional property that all y ∈ U have the same fibre dimension dim

(
f−1(y)

)
. Let Y be

embedded in kn. Then the algorithm also yields a reduced Gröbner basis of the vanishing ideal
J ⊆ k[y1, . . . , yn] of f(X) with respect to an arbitrarily chosen monomial ordering.

The following algorithm makes the theorem of Rosenlicht constructive.

Algorithm 3.1 (Computation of an open subset with a geometric quotient).
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Input: A linear algebraic group G and an irreducible, affine variety X, embedded in some kn,
with an action given by a morphism G×X → X.

Output: A non-empty, G-stable, open subset X̂ ⊆ X, and invariants f1, . . . , fr ∈ k[X̂]G which
separate all G-orbits in X̂. With Y ⊆ kr the variety defined by the relation ideal of the
fi, the algorithm can also achieve that the map X̂ → Y given by the fi is a geometric
quotient.

(1) Consider the map
ϕ: G×X → X ×X, (σ, x) 7→ (x, σ(x)) .

Use Algorithm 1.1 in [11] to compute a p.o.s. U of the image D := im(ϕ) ⊆ X ×X. Let
B ⊆ k[x1, . . . , xn, y1, . . . , yn] be the Gröbner basis of the vanishing ideal of D returned by
the algorithm, where a lexicographical monomial ordering with yi > xj for all i, j was
chosen (or any monomial ordering for which every yi is bigger than every power of an xj).

(2) Let pr1 : X ×X → X be the first projection. Use Algorithm 1.1 in [11] again to compute
a p.o.s. X ′ of pr1(U) ⊆ X.

(3) With G acting on the second factor of X ×X, set

B :=
(
D \

⋃
σ∈G

σ(U)
)
∩ (X ′ ×X ′)

and compute a p.o.s. X ′′ of X ′ \ pr1(B) ⊆ X. See Remark 3.2 for details.

(4) Set G0 := B \ k[x1, . . . , xn]. View elements f from G0 as polynomials in y1, . . . , yn with
coefficients in k[x1, . . . , xn] and let LCy(f) ∈ k[x1, . . . , xn] be the leading coefficient. Com-
pute a non-zero common multiple p of all LCy(f), f ∈ G0. Let X(3) ⊆ X ′′ be the subset of
points where p does not vanish.

(5) Now view the elements of G0 as polynomials with coefficients in the rational function field
k(x1, . . . , xn). Then G0 is a Gröbner basis. Convert this into a monic, reduced Gröbner
basis G. (This only involves divisions by divisors of p.) Let f1, . . . , fr ∈ k(x1, . . . , xn) be
the coefficients appearing in the polynomials from G. The fi are defined on X(3), and are
elements of the invariant field k(X)G.

(6) This step is optional and can be omitted if only orbit-separation but no geometric quotient
is desired. Use Algorithm 1.1 in [11] to compute a p.o.s. Y of π(X(3)) with π: X(3) → kr

the morphism given by the fi. Make Y smaller by excluding the non-normal locus (or,
perhaps more practically, the singular locus) of Y . If Y = {y ∈ Y | q(y) 6= 0}, include
fr+1 := q(f1, . . . , fr)−1 into the list of fi’s. Let X(4) ⊆ X(3) be the subset of points where
q(f1, . . . , fr) does not vanish.

(7) With i = 4 or i = 3 depending on whether step 6 was taken or not, compute

X̂ :=
⋃

σ∈G

σ(X(i)).

See Remark 3.2 how this union can be computed.

Remark 3.2. In steps 3 and 7 of the algorithm, it is required that the union of all σ(V ) of
a p.o.s. V of some G-variety Z is computed. In both cases, V is a p.o.s. of a closed G-stable
subset of Z (namely, D or X). So the computation of the union amounts to computing the ideal
generated by all σ(f), σ ∈ G, for an f ∈ k[Z]. If G is given by an ideal IG ⊆ k[t1, . . . , tm],
then we have F ∈ k[Z][t1, . . . , tm] such that the G-images of f are given as in Lemma 2.1. Let
GG ⊆ k[t1, . . . , tm] be a Gröbner basis of IG w.r.t. some monomial ordering. Write the normal
form of F as

NFGG
(F ) =

l∑
i=1

gi ·mi
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with gi ∈ k[Z] and mi ∈ k[t1, . . . , tm] monomials. Then it is not hard to show that g1, . . . , gl

span the same k-space as all σ(f). So the same is true for the ideals spanned by both sets. This
is how the unions in steps 3 and 7 can be computed.

In step 3, the set B (which may be empty) is then explicitly obtained as a principal open
subset of the closed set D\

⋃
σ(U), and pr1(B) ⊂ X is given by an elimination ideal. Computing

X ′′ amounts to finding an element in this elimination ideal which does not lie in the vanishing
ideal of X. It is shown in the proof of correctness of Algorithm 3.1 that pr1(B) is properly
contained in X. /

We now prove the correctness of Algorithm 3.1. The main ideas of the proof are drawn from
the proofs of Theorem 2.3 in Popov and Vinberg [13] and Satz 2.2 in Springer [14]. The new
elements are the usage of Gröbner bases and the circumstance that the various subsets X(i) need
not be G-stable. (This is essential for the effectiveness of the computations, since the X(i) can
be chosen to be p.o.s. and therefore affine varieties.)

Proof of correctness of Algorithm 3.1. We use the notation from the algorithm. For (x, y) ∈ D,
we have ϕ−1(x, y) ∼= Gx (the point-stabilizer). Since Algorithm 1.1 from [11] yields a p.o.s.
with constant fibre dimension, Gx has constant dimension on X ′, so the orbit dimension is also
constant:

dim (G(x)) = d for all x ∈ X ′. (3.1)

The irreducible components of G ×X ′ have the form
(
σG0

)
×X ′ with σ ∈ G and G0 the unit

component. By (3.1), all fibres of ϕ restricted to such a component have dimension dim(G)− d,
so by a theorem of Chevalley (see Hartshorne [8, Exercise 3.22(c)]), we obtain

dim
(
ϕ ((σG0)×X ′)

)
= dim

((
σG0

)
×X ′)− (dim(G)− d) = dim(X) + d.

Therefore
dim

(
D

)
= dim(X) + d. (3.2)

Consider the set
G(B) :=

(
D \

⋃
σ∈G

σ(U)
)
∩

(
X ′ ×

⋃
σ∈G

σ (X ′)
)
,

which contains B. U has non-empty intersection with at least one irreducible component of D.
Since the irreducible components have the form ϕ ((σG0)×X), the union

⋃
σ∈G σ(U) intersects

all of them and is therefore dense in D. With (3.2), it follows that

dim
(
G(B)

)
< dim

(
D

)
= dim(X) + d. (3.3)

Every irreducible component C of G(B) is G0-stable, so for (x, y) ∈ C, the orbit G0(y) is
included in the fibre C ∩ pr−1

1 (x). Since y ∈ σ(X ′) for some σ ∈ G, it follows by (3.1) that the
fibre dimension is at least d. So invoking Chevalley’s theorem again and using (3.3) yields

dim
(
pr1(C)

)
6 dim(C)− d < dim(X).

Therefore pr1 (G(B)) and also pr1(B) are proper subsets ofX. SoX ′′ as in step 3 of the algorithm
can be constructed. By construction, we have

(X ′′ ×X ′′) ∩ D ⊆ D. (3.4)

By construction, G and G0 generate the same ideals in k[x1, . . . , xn, y1, . . . , yn, 1/p]. Viewed as
subsets of k[X(3)][y1, . . . , yn] (or of the larger ring k(X)[y1, . . . , yn]), G and B then generate the
same ideal. Since B is the vanishing ideal of D, which is stable under the action of G on the
first component, the invariance of the fi follows from the uniqueness of monic, reduced Gröbner
bases. We also obtain

VarX(3)×X(G) = VarX(3)×X(B) =
(
X(3) ×X

)
∩ D.
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This also holds with X(3) replaced by the smaller set X(4) from step 6. In the following equation,
applying (σ, τ) ∈ G×G means that σ acts on the first component and τ on the second. So with
i = 3 or i = 4, depending on whether step 6 is performed, we obtain

Var bX× bX(G) =
⋃

σ∈G

Varσ(X(i))× bX(G) =
⋃

σ∈G

(σ, id)
(
VarX(i)× bX(G)

)
=

=
⋃

σ∈G

(σ, id)
((
X(i) × X̂

)
∩ D

)
=

⋃
σ,τ∈G

(σ, τ)
((
X(i) ×X(i)

)
∩ D

)
=

=
⋃

σ,τ∈G

(σ, τ)
((
X(i) ×X(i)

)
∩ D

)
=

(
X̂ × X̂

)
∩ D,

where (3.4) was used in the second last equality. Therefore two points x, y ∈ X̂ lie in the same
G-orbit if and only of F (x, y) = 0 for all F ∈ G. This implies that the fi separate all G-orbits in
X̂.

Finally, let us turn our attention to step (6). Since k[f1, . . . , fr] is a subring of k[X(3)], the
image closure of π, which is Y , is the variety defined by the relation ideal of f1, . . . , fr. Adding
fr+1 changes the relation ideal in such a way that the corresponding variety is isomorphic to Y ,
and substituting X(3) by X(4) assures that π(X(4)) = Y . The invariance of the fi implies that
π(X̂) = Y . So we have a surjective morphism onto a normal variety with G-orbits as fibres. By
Theorem 4.2 from Popov and Vinberg [13], X̂ → Y is a geometric quotient.

If G is connected, then G acts on all irreducible components of X \ X̂. So we can apply
Algorithm 3.1 iteratively, and will end up with a description of all G-orbits on X by means of
invariants, with case distinctions given by polynomials.
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